Comparison of the Fatigue Crack Propagation Resistance of α+β and β Titanium Alloys

Abstract:

Article Preview

The present paper tries to summarize the relationship between microstructure, extrinsic mechanisms and fatigue crack propagation resistance of α+β and β titanium alloys. Emphasis is placed on microstructural parameters, which can be varied by processing, and their effects on the material inherent fracture properties, governing the resistance against microcrack propagation. Moreover, the resistance against macrocracks as well as small cracks in the presence of notch plasticity has been discussed on the basis of secondary extrinsic mechanics such as crack front geometry, crack bridging and crack closure.

Info:

Periodical:

Key Engineering Materials (Volumes 378-379)

Edited by:

Dr. T. S. Srivatsan, FASM, FASME

Pages:

117-130

DOI:

10.4028/www.scientific.net/KEM.378-379.117

Citation:

M. Benedetti "Comparison of the Fatigue Crack Propagation Resistance of α+β and β Titanium Alloys", Key Engineering Materials, Vols. 378-379, pp. 117-130, 2008

Online since:

March 2008

Authors:

Export:

Price:

$35.00

[1] R. R. Boyer: Mater. Sci. Engng A, Vol. A213 (1996), pp.103-114.

[2] G. Lütjering and J. C. Williams: Titanium (Springer, Germany 2003).

[3] J. O. Peters and G. Lütjering: Metall Mat Trans A, Vol. 32A (2001), pp.2805-2818.

[4] G. Lütjering: Mater. Sci. Engng A, Vol. A243 (1998), pp.32-45.

[5] M. Benedetti, J. Heidemann, J. O. Peters and G. Lütjering: Fatigue Fract Engng Mater Struct, Vol. 28 (2005), pp.909-922.

[6] J. O. Peters, E. Janvier and G. Lütjering, in: Fatigue 2002, edited by A. F. Blom, EMAS, UK (2002).

[7] J. Hines, J. O. Peters and G. Lütjering, in: Fatigue Behaviour of Titanium Alloy, edited by R. R. Boyer, D. Eylon and G. Lütjering, TMS, Warrendale, PA (1999).

[8] R. O. Ritchie: Int. J. Fract., Vol. 100 (1999), pp.55-83.

[9] M. D. Halliday and C. J. Beevers: J. Test. Eval. JTEVA, Vol. 9 (1981), pp.195-201.

[10] K. S. Ravichandran: Acta Mater., Vol. 39 (1991), pp.401-410.

[11] M. R. James and W. L. Morris: Metall. Mater. Trans. A, Vol. 14A (1983), pp.153-158.

[12] M. Benedetti and V. Fontanari: Fatigue Fract Engng Mater Struct, Vol. 27 (2004), pp.1073-1089.

[13] M. Benedetti, V. Fontanari, G. Lütjering and J. Albrecht: Eng Fract Mech (2007), in press.

[14] M. Benedetti, J. O. Peters and G. Lütjering, in: Ti-2003 Science and Technology, edited by G. Lütjering and J. Albrecht, Wiley-VCH, Switzerland (2003).

[15] J. Albrecht and G. Lütjering: in: Titanium 99 Science and Technology, edited by I. V. Gorynin and S. S Ushkov, CRISM, St. Peterburg (2000).

[16] J. O. Peters, C. Sauer and G. Lütjering, in: Fatigue Behaviour of Titanium Alloy, edited by R. R. Boyer, D. Eylon and G. Lütjering, TMS, Warrendale, PA (1999).

[17] M. Benedetti, J. O. Peters and G. Lütjering, in: Fatigue Crack Paths 2003, edited by A. Carpinteri, Italy (2003).

[18] R. A. Smith and K. J. Miller: Int. J. Mech. Sci., Vol. 1 (1977), pp.11-22.

[19] M. M. Hammouda, R. A. Smith and K. J. Miller: Fatigue Fract Engng Mater Struct, Vol. 2 (1979), pp.139-154.

[20] M. Benedetti, L. Bertini and V. Fontanari: Fatigue Fract Engng Mater Struct, Vol. 27 (2004), pp.111-125.

[21] R. C. McClung and H. Shitoglu: ASME J. Engng Mater. Technol., Vol. 114 (1992), pp.1-7.

In order to see related information, you need to Login.