Comparison of the Fatigue Crack Propagation Resistance of α+β and β Titanium Alloys

Article Preview

Abstract:

The present paper tries to summarize the relationship between microstructure, extrinsic mechanisms and fatigue crack propagation resistance of α+β and β titanium alloys. Emphasis is placed on microstructural parameters, which can be varied by processing, and their effects on the material inherent fracture properties, governing the resistance against microcrack propagation. Moreover, the resistance against macrocracks as well as small cracks in the presence of notch plasticity has been discussed on the basis of secondary extrinsic mechanics such as crack front geometry, crack bridging and crack closure.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 378-379)

Pages:

117-130

Citation:

Online since:

March 2008

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. R. Boyer: Mater. Sci. Engng A, Vol. A213 (1996), pp.103-114.

Google Scholar

[2] G. Lütjering and J. C. Williams: Titanium (Springer, Germany 2003).

Google Scholar

[3] J. O. Peters and G. Lütjering: Metall Mat Trans A, Vol. 32A (2001), pp.2805-2818.

Google Scholar

[4] G. Lütjering: Mater. Sci. Engng A, Vol. A243 (1998), pp.32-45.

Google Scholar

[5] M. Benedetti, J. Heidemann, J. O. Peters and G. Lütjering: Fatigue Fract Engng Mater Struct, Vol. 28 (2005), pp.909-922.

Google Scholar

[6] J. O. Peters, E. Janvier and G. Lütjering, in: Fatigue 2002, edited by A. F. Blom, EMAS, UK (2002).

Google Scholar

[7] J. Hines, J. O. Peters and G. Lütjering, in: Fatigue Behaviour of Titanium Alloy, edited by R. R. Boyer, D. Eylon and G. Lütjering, TMS, Warrendale, PA (1999).

Google Scholar

[8] R. O. Ritchie: Int. J. Fract., Vol. 100 (1999), pp.55-83.

Google Scholar

[9] M. D. Halliday and C. J. Beevers: J. Test. Eval. JTEVA, Vol. 9 (1981), pp.195-201.

Google Scholar

[10] K. S. Ravichandran: Acta Mater., Vol. 39 (1991), pp.401-410.

Google Scholar

[11] M. R. James and W. L. Morris: Metall. Mater. Trans. A, Vol. 14A (1983), pp.153-158.

Google Scholar

[12] M. Benedetti and V. Fontanari: Fatigue Fract Engng Mater Struct, Vol. 27 (2004), pp.1073-1089.

Google Scholar

[13] M. Benedetti, V. Fontanari, G. Lütjering and J. Albrecht: Eng Fract Mech (2007), in press.

Google Scholar

[14] M. Benedetti, J. O. Peters and G. Lütjering, in: Ti-2003 Science and Technology, edited by G. Lütjering and J. Albrecht, Wiley-VCH, Switzerland (2003).

Google Scholar

[15] J. Albrecht and G. Lütjering: in: Titanium 99 Science and Technology, edited by I. V. Gorynin and S. S Ushkov, CRISM, St. Peterburg (2000).

Google Scholar

[16] J. O. Peters, C. Sauer and G. Lütjering, in: Fatigue Behaviour of Titanium Alloy, edited by R. R. Boyer, D. Eylon and G. Lütjering, TMS, Warrendale, PA (1999).

Google Scholar

[17] M. Benedetti, J. O. Peters and G. Lütjering, in: Fatigue Crack Paths 2003, edited by A. Carpinteri, Italy (2003).

Google Scholar

[18] R. A. Smith and K. J. Miller: Int. J. Mech. Sci., Vol. 1 (1977), pp.11-22.

Google Scholar

[19] M. M. Hammouda, R. A. Smith and K. J. Miller: Fatigue Fract Engng Mater Struct, Vol. 2 (1979), pp.139-154.

Google Scholar

[20] M. Benedetti, L. Bertini and V. Fontanari: Fatigue Fract Engng Mater Struct, Vol. 27 (2004), pp.111-125.

Google Scholar

[21] R. C. McClung and H. Shitoglu: ASME J. Engng Mater. Technol., Vol. 114 (1992), pp.1-7.

Google Scholar