Internal Fatigue Failure Mechanism of High Strength Steels in Gigacycle Regime

Abstract:

Article Preview

Gigacycle fatigue behavior in high-strength steels tested under rotary bending fatigue was summarized in this paper. Characteristic of the very high cycle fatigue is to be caused the transition of fracture mode from surface-induced fracture to subsurface inclusion-induced one. In the vicinity of an inclusion at the origin of internal crack, granular-bright-facet (GBF) area was formed during extremely long fatigue cycles. It was pointed out that the formation of GBF area was an important factor for the control of the internal fatigue fracture in gigacycle regime. The GBF area revealed a very rough granular morphology compared with the area outside the GBF inside the fish-eye zone, and was related to the carbide distribution in the microstructure of the matrix. From the detailed observation of fracture surface and computer simulation by FRASTA method, the GBF area formation mechanism in a gigacycle fatigue regime was proposed as the ‘dispersive decohesion of spherical carbide model’.

Info:

Periodical:

Key Engineering Materials (Volumes 378-379)

Edited by:

Dr. T. S. Srivatsan, FASM, FASME

Pages:

65-80

DOI:

10.4028/www.scientific.net/KEM.378-379.65

Citation:

K. Shiozawa and L. T. Lu, "Internal Fatigue Failure Mechanism of High Strength Steels in Gigacycle Regime", Key Engineering Materials, Vols. 378-379, pp. 65-80, 2008

Online since:

March 2008

Export:

Price:

$35.00

[1] First international conference was held as Fatigue life in the gigacycle regime", 1998 in Paris. The Second; "Fatigue in the very high cycle regime", 2001 in Vienna, the Third; "Very high cycle fatigue (VHCF-3)", 2004 in Kyoto/Kusatsu, and the Fourth; "Very high cycle fatigue (VHCF-4), 2007 in Ann Arbor, Michigan.

DOI: 10.1007/978-0-387-92897-5_101501

[2] Q.Y. Wang, Y. Berard, A. Dubarre, G. Baudry, S. Rathery and C. Bathias: Fatigue Fract. Engng. Mater. Struc. Vol. 22-7(1999), pp.667-672.

DOI: 10.1046/j.1460-2695.1999.00185.x

[3] Y. Murakami, T. Nomoto and T. Ueda: Fatigue Fract Engng Mater Struc. Vol. 22-7(1999), pp.581-590.

[4] Y. Murakami, T. Nomoto and T. Ueda, Y. Murakami, M. Ohori: J. Soc. Mater. Sci. Jpn Vol. 48 -10(1999), pp.1112-1117.

[5] Y. Murakami, M. Takada and T. Toriyama: Int. J. Fatigue Vol. 20-9(1998), pp.661-667.

[6] S. Nishijima and K. Kanazawa: Fatigue Fract. Engng Mater. Struct. Vol. 22-7(1999), pp.601-607.

[7] T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi, M. Nakajima, T. Nakamura and N. Oguma, in: Fatigue '99 (Proc. 7th Inter. Fatigue Cong) Vol. 1(1999), pp.573-578.

[8] T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi, M. Nakajima, T. Nakamura and N. Oguma: J. Soc. Mater. Sci. Jpn Vol. 49-7(2000), pp.779-785.

[9] M. Nakajima, T. Sakai and T. Shimizu: Trans. Jpn Soc. Mech. Eng. Vol. 65A-640(1999), pp.2504-2510.

[10] T. Sakai, M. Takeda, N. Tanaka, M. Kanemitsu, N. Oguma and K. Shiozawa: Mat. Sci. Res. Int. STP-1, Soc. Mat. Sci. Jpn(2001), pp.41-46.

[11] H. Emura H and K. Asami: Trans. Jpn Soc. Mech. Eng. Vol. 55A-509(1989), pp.45-50.

[12] K. Shiozawa, S. Nishino, T. Ohtani and S. Mizuno, in: Small Fatigue Cracks. Mechanics, Mechanisms and Applications, Elsevier Sci. (1999), pp.39-47.

[13] K. Shiozawa, in: Macro and Microscopic Approach to Fracture, edited by S. -I. Nishida, WIT press (2003), pp.117-170.

[14] K. Shiozawa and H. Matsushita, in: Fatigue 96, Pergamon Press(1996), pp.301-306.

[15] K. Shiozawa, Y. Kuroda and S. Nishino, Trans. Jpn Soc. Mech. Eng. Vol. 64A-626(1998), pp.2528-2535.

[16] L. Ruppen, P. Bhowal, D. Eylon and J. McEvily, in: Fatigue Mechanics, ASTM-STP 675, ASTM (1979), pp.47-68.

[17] A. Atrens, W. Hoffelner, T. W. Duering and J.E. Allison: Scripta Metallu. Vol. 17-5(1983), pp.601-606.

[18] S. Adachi, L. Wagner and G. Lutjering, in: Proc. 5th Int. Conf. Ti Sci. Tech. Vol. 4(1985), 2139-2146.

[19] J. Bian, K. Tokaji, M. Nakajima and T. Ogawa: J. Jpn Soc. Mat. Sci. Jpn Vol. 44-502(1995), pp.933-938.

[20] K. Shiozawa, L. Lu and S. Ishihara: Fatigue Fract. Engng Mater. Struct. Vol. 24-12(2001), pp.781-790.

[21] K. Shiozawa and L. Lu: Fatigue Fract. Engng Mater. Struct. Vol. 25-8/9(2002), pp.813-822.

[22] Y. Ochi, T. Matsumura, K. Masaki and S. Yoshida: Fatigue Fract. Engng Mater. Struct. Vol. 25-8/9(2002), pp.823-830.

[23] K. Shiozawa, S. Nishino, N. Shibata and Y. Maruyama, in VHCF-3, Soc. Mater. Sci., Jpn (2004), pp.609-616.

[24] L. Lu, K. Shiozawa and Y. Morii: Trans. Jpn Soc. Mech. Eng. Vol. 69A-679(2003), pp.662-670.

[25] L. Lu and K. Shiozawa: Trans. Jpn Soc. Mech. Eng. Vol. 69A-684(2003), pp.1195-1202.

[26] K. Shiozawa, Y. Morii, S. Nishino and L. Lu: J. Soc. Mater. Sci. Jpn Vol. 52-11(2003), pp.1311-1317.

[27] K. Shiozawa, Y. Morii, S. Nishino and L. Lu: Inter. J. Fatigue Vol. 28-11(2006), pp.1521-1532.

[28] K. Shiozawa, Y. Morii and S. Nishino: Trans. Jpn Soc. Mech. Eng. Vol. 70A-691(2004), pp.495-503.

[29] K. Shiozawa, Y. Morii and S. Nishino: JSME Inter. J. Series A Vol. 49-1(2006), pp.1-10.

[30] Y. Murakamu and M. Endo: Inter. J. Fatigue Vol. 16-2(1994), pp.163-182.

[31] L. Lu and K. Shiozawa, in VHCF-3, Soc. Mater. Sci., Jpn (2004), pp.185-192.

[32] T. Kobayashi and D.A. Shockey: Ad. Mater. & Processes Vol. 140-5(1991), pp.28-34.

[33] Y. Murakami, N.N. Yokoyama and K. Takai: J. Soc. Mat. Sci. Jpn Vol. 50-10(2001), pp.1068-1073.

In order to see related information, you need to Login.