Laser Surface Modification of Various Tool Steels for Improving Hardness and Corrosion Resistance

Article Preview

Abstract:

Laser surface modification of nine tool steels, namely, plastics mold steels (PMSs), high-speed steels (HSSs) and cold/hot-work steels (CHWSs), was achieved by means of a CW Nd:YAG laser. The microstructure and the phases present in the surface of the specimens were analyzed by optical microscopy, scanning-electron microscopy and X-ray diffractometry. The surface hardness of the specimens was measured using a Vickers microhardness tester. The corrosion characteristics of the laser surface-melted steels in 3.5 wt% NaCl solution at 25 oC were studied by potentiodynamic polarization technique. The microstructures of the surface of the steels were changed completely after laser surface melting. Some steels showed improved corrosion resistance compared with the conventionally hardened specimens due to dissolution of the alloying elements in solid solution. The hardness and corrosion characteristics of all the laser surface-melted specimens are strongly dependent on the amount of passivating elements in solid solution and also on the morphology of the re-precipitated carbides. Both these factors depend on the laser processing parameters and the substrate compositions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-155

Citation:

Online since:

June 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Krauss, Microstructures, Processing, and Properties of Steels, in ASM Handbook, V. 1, 10th Ed., ASM International, (2002).

Google Scholar

[2] V.A. Alves, C.M.A. Brett, A. Cavaleiro, J. App. Electrochem. 31 (2001) 65-72.

Google Scholar

[3] P.A. Molian, Surface modification technologies - An engineer's guide (ed. ) T.S. Sudarshan, N.Y.: Macel Dekker (1989) p.421.

Google Scholar

[4] J. Grum, R. Sturm, Int. J. Microstructure and Materials Properties, 1 (2005) 11-23.

Google Scholar

[5] W.J. Tomlinson, J.H. Megaw, A.S. Bransden, M. Girardi, Wear, 116 (1987) 249-260.

Google Scholar

[6] S.P. Gadag, M.N. Srinivasan, J. Mater. Process. Technol. 51 (1995) 150-163.

Google Scholar

[7] A.S. Akkurt, O.V. Akun, N. Yakupoglu, J. Mater. Sci. 31 (1996) 4907-4911.

Google Scholar

[8] J.M. Pelletier, D. Pergue, F. Fouquet, H. Mazille, J. Mater. Sci. 24 (1989) 4343-4349.

DOI: 10.1007/bf00544509

Google Scholar

[9] D.R. Rao, B. Ventakaraman, M.K. Asundi, G. Sundararajan, Surf. Coat. Technol. 58 (1993) 85-92.

Google Scholar

[10] J.C. Ion, T. Moisio, T.F. Pedersen, B. Sorensen, C.M. Hansson, J. Mater. Sci. 26 (1991) 43-48.

Google Scholar

[11] P.H. Chong, Z. Liu, P. Skeldon, P. Crouse, App. Surf. Sci. 247 (2005) 362-368.

Google Scholar

[12] P.H. Chong, Z. Liu , X.Y. Wang, P. Skeldon, Thin Solid Films, 453-454, 1 (2004) 388-393.

DOI: 10.1016/j.tsf.2003.11.094

Google Scholar

[13] O.V. Akgun and O.T. Inal, J. Mater. Sci. 30 (1995) 6105-6112.

Google Scholar

[14] N. Parvathavarthini, R.V. Subbarao, S. Kumar, R.K. Dayal, H.S. Khatak, J. Mater. Eng. Perf. 10 (2001) 5-13.

Google Scholar

[15] U.K. Mudai, M.G. Pujar, R.K. Dayal, J. Mater. Eng. Perf. 7 (1998) 214-220.

Google Scholar

[16] A. Conde, R. Colaco, R. Vilar, J. de Damborenea, Materials & Design, 21 (2000) 441-445.

Google Scholar

[17] C.T. Kwok, H.C. Man, F.T. Cheng, Surf. Coat. Technol. 126 (2000) 238-255.

Google Scholar

[18] R. Colaço, R. Vilar, Wear, 258 (2005) 225-231.

Google Scholar

[19] C.T. Kwok, K.H. Lo, F.T. Cheng, H.C. Man, S Surf. Coat. Technol. 166 (2003) 221-230.

Google Scholar

[20] K.H. Lo, F.T. Cheng, C.T. Kwok, H.C. Man, Mater. Lett. 58 (2004) 88-93.

Google Scholar

[21] C.T. Kwok, H.C. Man, F.T. Cheng, Surf. Coat. Technol. 99 (1998) 295-304.

Google Scholar

[22] C.T. Kwok, K.I. Leong, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A, 357 (2003) 94-103.

Google Scholar

[23] P.R. Strutt, H. Nowotny, M. Tuli, B.H. Kear, Mater. Sci. Eng. 36 (1978) 217-222.

Google Scholar

[24] J. Kusinski, Metall. Trans. A, 19 A (1988) 377-382.

Google Scholar

[25] R. Vilar, R. Colaço, A. Almeida, Optical and Quantum Electronics, 27 (1995) 1273-1289.

Google Scholar

[26] W. Bochnowski, H. Leitner, L. Major, R. Ebner, B. Major, Mater. Chem. Phy. 81, (2003) 503-506.

Google Scholar

[27] S. Kac, J. Kusinski, Surf. Coat. Technol. 180-181 (2004) 611-615.

Google Scholar

[28] M.J. Hsu and P.A. Molian, Wear, 127 (1988) 253-268.

Google Scholar

[29] C.T. Kwok, F.T. Cheng, H.C. Man, Surf. Coat. Technol. 202 (2007) 336-348.

Google Scholar

[30] K.A. Chiang, Y.C. Chen, Mater. Lett. 59 (2005) 1919-(1923).

Google Scholar

[31] Y. Sun, S. Hanaki, M. Yamashita, H. Uchida, H. Tsujii, Vacuum, 13 (2004) 655-660.

Google Scholar

[32] H. Bande, G. L'Esperance, M.U. Islam, A.K. Koul, Mater. Sci. Technol. 7 (1991) 452-457.

Google Scholar

[33] N.B. Dahotre, A. Hunter, K. Mukherjee, J. Mater. Sci. 24 (1987) 403-406.

Google Scholar

[34] ASTM Standard G5-92, ASTM, PA, (1992).

Google Scholar

[35] ASTM Standard G102-89, ASTM, PA, (1994).

Google Scholar

[36] R. Colaco, R. Vilar, Surf. Eng. 12 (1996) 319.

Google Scholar

[37] R. Colaco, R. Vilar, Scripta Mater. 36 (1997) 199-205.

Google Scholar

[38] M.L. Escudero, J.M. Bello, Mater. Sci. Eng. A, 158, (1992) 227-233.

Google Scholar

[39] P. Villars, A. Prince and H. Okamoto, Handbook of Tenary Alloy Phase Diagram, Vol. 5, ASM, p.6632 (1995).

Google Scholar

[40] P.A. Molian, H.S. Rajasekhara, J. Mater. Sci. Lett., 5 (1986) 1292-94.

Google Scholar

[41] D.A. Porterm K.E. Easterling, Phase Transformation in Metals and Alloys, 2 nd Ed., Chapman & Hall, UK, 1992, pp.251-254.

Google Scholar

[42] P.A. Molian, H.S. Rajasekhara, J. Mater. Sci. Lett., 5 (1986) 1292-94.

Google Scholar

[43] L. Ahman, Metall. Trans. A 15 (1984) 1829-1835.

Google Scholar

[44] F. Hlawka, T. Marchione, O. Jacura, A. Conet, Surf. Eng. 9 (1993) 300-304.

Google Scholar

[45] S. Kac, J. Kusinski, Mater. Chem. Phy. 81 (2003) 510-512.

Google Scholar

[46] W. Bochnowski, H. Leitner, L. Major, R. Ebner, B. Major, Mater. Chem. Phy. 81 (2003) 503-506.

Google Scholar

[47] B. Baroux, 'Furthur Insights on the Pitting Corrosion of Stainless Steels, in Corrosion Mechanism in Theory and Practice, P. Marcus & J. Oudar (Ed. ), NY, p.273 (1995).

Google Scholar

[48] V.S. Kraposhin, Proc. Russian National Conf. On Industrial Lasers and Laser Materials Processing, April 1993, Shatura, Moscow Region, Russia, Int. Soc. for Optical Engineering, p.63.

Google Scholar

[49] T.L. Walzka, J.S. Sheasby, Corrosion, 39 (1983) 502-507.

Google Scholar

[50] M. H. Ras, P. C. Pistorius, Corros. Sci. 44 (2002) 2479-2490.

Google Scholar

[51] S. Peissl, G. Mori, H. Leitner, R. Ebner, S. Egisaer, Mater. Corros. 57 (2006) 759-765.

Google Scholar

[52] L. L Shreir, R.A. Jarman, G, T, Burstein Corrosion Metal/Environment Reactions, 3rd edn, Butterworth Heinemann, (1994) 3: 52.

Google Scholar

[53] A. Philip, P.E. Schweitzer, Corrosion Engineering Handbook, 1st Ed., Dekker (1996) 72.

Google Scholar