A Perspective of Pulsed Laser Deposition (PLD) in Surface Engineering: Alumina Coatings and Substrates

Article Preview

Abstract:

In this article, two original studies of the alumina as porous substrate and PLD (pulsed laser deposition) thin films in view of its biomedical and tribological applications are presented. The first biomedical study aimed to evaluate the role of Al2O3 on thin deposited nanostructures. For this purpose, cerium stabilized zirconia doped hydroxyapatite thin films were deposited by PLD onto high purity, high density alumina substrates with different low porosities. For deposition, an UV KrF* (λ=248 nm, τ ~ 25 ns) excimer laser was used for the multi-pulse irradiation of the targets. The nanostructured surface morphologies of the thin films with micro droplets were evidenced by atomic force microscopy and scanning electron microscopy and the compositions with a Ca/P ratio of 1.7 by energy dispersive spectroscopy. The films were seeded with mesenchymal stem cells for in vitro tests. The cells showed good attachment and spread and covered uniformly the surface of the samples. Different functions of substrate porosities are observed in the efficiency of developing long filopodia and of obtaining the optimal intracellular organization. The second study aimed to understand the influence of micro-structural and mechanical characteristics on the tribological behaviour of stainless steel samples with PLD alumina coatings produced using an UV KrF* (λ=248 nm, τ ~ 20 ns) excimer laser and a sintered alumina target. Various microscopic observation techniques were used in order to connect the tribological response to the amorphous microstructure of the coatings. The results correspond to the determination of the mechanical characteristics by nanoindentation tests, scratch tests, and a tribological behaviour analysis of the treated steel against 100Cr6. The films were stoichiometric, partially crystallized with an amorphous matrix and their surfaces had few particulates deposited on. The obtained values of hardness and elastic modulus of the films were in good agreements with literature data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

185-212

Citation:

Online since:

June 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. A. Speets, P. te Riele, M. A. F. van den Boogaart, L. M. Doeswijk, B. J. Ravoo, G. Rijnders, J. Brugger, D. N. Reinhoudt, D. H. A. Blank, Adv. Funct. Mater. 16, (2006), pp.1337-1342.

DOI: 10.1002/adfm.200500933

Google Scholar

[2] A. Chiba, S. Kimura, K. Raghukandan and Y. Morizono, Materials Science and Engineering A 350, (2003), pp.179-183.

Google Scholar

[3] V. Pârvulescu, V.I. Pârvulescu, P. Grange, Catal. Today 57 (2000) 193.

Google Scholar

[4] Gottmann, J., Husmann, A., Klotzbucher T., Kreutz, E.W. Surf. Coat. Technol. (1998) 100-101 (1-3), pp.415-419.

Google Scholar

[5] M. Jiménez de Castro, A. Suárez-García, R. Serna, C.N. Afonso and J. García López, Optical Materials, 29 (2007), pp.539-542.

DOI: 10.1016/j.optmat.2005.08.047

Google Scholar

[6] A. Husmann, J. Gottmann, T. Klotzbücher and E.W. Kreutz, Surf. Coat. Technol. 100-101(1998), pp.411-414.

Google Scholar

[7] Schlaghecken G., Perera, Y., Kreutz E.W., Poprawe, R., Procee. SPIE 4426 (2002) pp.252-255.

Google Scholar

[8] H. Szymanowsky, A. Sobczyk, M. Gazicki-Lipman, W. Jakubowski, L. Klimek, Surf. Coat. Technol. 200 (2005) 1036.

Google Scholar

[9] D.E. Ruddell, B.R. Stoner, J.Y. Thompson, Thin Solid Films 455 (2003).

Google Scholar

[10] D. Schwingel, R. Taylor, T. Haubold, J. Wigren, C. Gualco, Surf. Coat. Technol. 108-109 (1998) 99.

Google Scholar

[11] K.K. Akurati, S.S. Bhattacharya, M. Winterer, H. Kahn, J. Phys. D: Appl. Phys. 39 (2006) 2248.

Google Scholar

[12] A. -W. Xu, J.C. Yu, H. -X. Zhang, L. -Z. Zhang, D. -B. Kuang, Y. -P. Fang, Langmuir 18 (2002) 9570.

Google Scholar

[13] Fukuda, Takashi, Saburi, Toshio, Kamimura, Naoki, Crystallization and growth of γAl2O3 in a film prepared by sol-gel method, Techn. Reports Osaka Univ. 46, (1996), pp.173-179.

Google Scholar

[14] J. M. Schneider, W. D. Sproul and A. Matthews, Surf. Coat. Technol, 98 (1998), pp.1473-1476.

Google Scholar

[15] M. Kamoshida, I.V. Mitchell and J.W. Mayer, Appl. Phys. Lett. 18 (1971), p.292.

Google Scholar

[16] K. Iida and T. Tsujide, Jpn. J. Appl. Phys. 11 (1972), p.840.

Google Scholar

[17] Q. Li, Y-H. Yu, C. Singh Bhatia, L. D. Marks, S. C. Lee, Y. W. Chunga, J. Vac. Sci. Technol. A, Vol. 18, No. 5, Sep-Oct (2000).

Google Scholar

[18] O. Zywitzki, G. Hoetzsch, F. Fietzke, K. Goedicke, Surf. Coat. Technol. 82 (1996) 169.

Google Scholar

[19] O. Kyrylov, D. Kurapov, J.M. Schneider, Appl. Phys., A 80 (2004) 1657.

Google Scholar

[20] J.M. Andersson, Zs. Czigány, P. Jin, U. Helmersson, J. Vac. Sci. Technol., A 22 (2004) 117.

Google Scholar

[21] P. Jin, G. Xu,M. Tazawa, K. Yoshimura, D. Music, J. Alami, U. Helmersson, J. Vac. Sci. Technol., A 20 (2002) 2134.

Google Scholar

[22] A. Hatton, J. E. Nevelos, A. A. Nevelos, R. E. Banks, J. Fisher and E. Ingham, Biomaterials, 23 (2002), pp.3429-3440.

DOI: 10.1016/s0142-9612(02)00047-9

Google Scholar

[23] M. Mathew, S. Takagi, J. Res. Natl. Inst. Stand. Technol. 1035 (2001) 106.

Google Scholar

[24] M. Ogiso, J. Long Term Eff. Med. Implants 8(3-4) (1998) 193.

Google Scholar

[25] M. R. Towler, I. R. Gibson, J. Mater. Sci. Lett. 20 (2001) 1719.

Google Scholar

[26] Y. I. Zawahreh, N. Popova, R. W. Smith, J. Hendry, T. J. N. Smith, T. L. Ziolo, J. Mater. Sci. Mater. Med. 16 (2005) 1179.

DOI: 10.1007/s10856-005-4726-3

Google Scholar

[27] L. L. Hench, O. Anderson, in: L. L. Hench, J. Wilson (Eds. ), An Introduction to Bioceramics, World Scientific, Singapore, 1993, p.239.

Google Scholar

[28] W. R. Lacefield, Hydroxyapatite coatings. Eucheyene, P.; Lemons, J., Eds. Bioceramics: Materials Characteristics Versus In Vivo Behavior. New York: New York Academy of Science; (1988) 72-80.

DOI: 10.1111/j.1749-6632.1988.tb38501.x

Google Scholar

[29] J. Koeneman, J. Lemons, P. Ducheyne, W. Lacefield, Workshop on characterization of calcium phosphate materials, J. Appl. Biomater. (1990) 1: 79-90.

DOI: 10.1002/jab.770010110

Google Scholar

[30] R. G. T. Geesink, K. deGroot, C. P. A. T. Klein, Chemical implant fixation using hydroxyl-apatite coatings. Clin. Orthop. (1987) 225: 147-170.

DOI: 10.1097/00003086-198712000-00014

Google Scholar

[31] V. Nelea, I.N. Mihailescu, and M. Jelinek in R. Eason (Ed), John Wiley & Sons Inc., Chap. 18, 2007, p.421.

Google Scholar

[32] A. Bigi, B. Bracci, F. Cuisinier, R. Elkaim, M. Fini, I. Mayer, I.N. Mihailescu, G. Socol, L. Sturba, and P. Torricelli, Biomaterials, 2381 (2005) 26.

DOI: 10.1016/j.biomaterials.2004.07.057

Google Scholar

[33] M. Iliescu, V. Nelea, J. Werckmann, G. Socol, I.N. Mihailescu, I. Mayer, and F. Cuisinier, Mat. Sci. Eng. C, 105 (2007) 27.

DOI: 10.1016/j.msec.2006.03.006

Google Scholar

[34] H. Zeng, W.R. Lacefield, and S. Mirov, J. Biomed. Mater. Res., 248-58 (2000) 50(2).

Google Scholar

[35] T. Matsuura, R. Hosokawa, K. Okamoto, T. Kimoto, and Y. Akagawa, Biomaterials, 1121 (2000) 21.

Google Scholar

[36] P. Torricelli, M. Fini, G. Giavaresi, V. Borsari, A. Carpi, A. Nicolini, and R. Giardino, Biomed Pharmacother 57 (2003) 57.

DOI: 10.1016/s0753-3322(02)00329-3

Google Scholar

[37] F. Sima, G. Socol, E. Axente, I.N. Mihailescu, L. Zdrentu, S.M. Petrescu, I. Mayer, Appl. Surf. Sci. (2007), doi: 10: 1016/j. apsusc. 2007. 08. 053.

DOI: 10.1016/j.apsusc.2007.08.053

Google Scholar

[38] L. Meinel, R. Fajardo, S. Hofmann, R. Langer, et al. Bone 2005; 37: 688-698.

Google Scholar

[39] E. Gyorgy, P. Toricelli, G. Socol, M. Iliescu, I. Mayer, I.N. Mihailescu, A. Bigi, and J. Werckmann, J. Biomed. Mater. Res. A, 353 (2004) 71°.

Google Scholar

[40] D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen (EdS), Titanium in medicine, Berlin: Springer; (2001).

Google Scholar

[41] V. Nelea, I. N Mihailescu M. Jelinek, Pulsed Laser Deposition of Thin Films: Applications-LED Growth of Functional Materials, Ed. Robert Eason, J. Wiley &sons Inc. Hoboken, New Jersey. pp.421-456 (2007).

DOI: 10.1002/9780470052129.ch18

Google Scholar

[42] E.W. Kreutz. M. Alunovic. A. Voss. W. Pfleging. H. Sung, D.A. Wesner Surface and Coatings Technology. 68/69 (238-243) (1994).

DOI: 10.1016/0257-8972(94)90167-8

Google Scholar

[43] Eason Robert W., Chrisey Douglas B. Pulsed laser deposition of thin films : applications in electronics, sensors & biomaterials, Wiley Ed.

Google Scholar

[44] A. Chanda, A. K. Mukhopadhyay, D. Basu and S. Chatterjee, Ceramics International, 23 (1997), pp.437-447.

Google Scholar

[45] W.C. Oliver and G.M. Pharr, J. Mater. Res., Vol. 7, Issue 4 (1992) pp.1564-1583.

Google Scholar

[46] T.W. Wu, J. Mater. Res., Vol. 6, Issue 2 (1991) pp.407-426.

Google Scholar

[47] H. Pelletier, Ph. D Thesis, Université Louis Pasteur, Strasbourg (2002).

Google Scholar

[48] H. Bückle, Applications to other material properties, in: J.W. Westbrook, H. Conrad (Eds. ) The science of hardness testing and its research Applications, ASM, Metals Park, OH, 1973 pp.453-491.

Google Scholar

[49] Y. Sun, T. Bell, S. Zheng, Thin Solid Films, 258 (1995) p.198.

Google Scholar

[50] B. Jönsson and S. Hogmark, Thin Solid Films, 114 (1984) p.257.

Google Scholar

[51] P.J. Burnett and T.F. Page, J. Mater. Sci. 19 (1984) p.845.

Google Scholar

[52] A.M. Korunsky, M.R. McGurk, S.J. Bull, T.F. Page, Surface and Coatings Technology, 99 (1998) pp.171-183.

Google Scholar

[53] . R. Saha and W.D. Nix, Acta Materialia, 50 (2002) pp.23-38.

Google Scholar

[54] M.F. Doerner, D.S. Gardner, W.D. Nix, J. Mater. Res., Vol. 1 (1986) p.845.

Google Scholar

[55] R.B. King, Int. J. Solids Structures, 23 (1987) p.1657.

Google Scholar

[56] H. Gao, C. Cheng-Hsin, L. Jin, Int. J. Solids Structures, 29 (1992) p.2471.

Google Scholar

[57] J. H. Ahn and D. Kwon, Mater. Sci. Eng. A, 285 (2000) pp.172-179.

Google Scholar

[58] M. Natali, G. Carta, V. Rigato et al., Electrochimica Acta, 50 (2005) pp.4615-4620.

Google Scholar

[59] H. Pelletier, J. Krier, P. Mille, Mechanics of Materials, 38 (2006) pp.1182-1198.

Google Scholar

[60] J.A. Knapp, D.M. Follstaedt, S. M. Myers, J. Appl. Phys., Vol. 79, Issue 2 (1996) pp.1116-1122.

Google Scholar

[61] D. Tabor, The hardness of solids, Proceedings of the Institute of Physics F, Physics in Technology 1 (1970) 145-179.

Google Scholar

[62] G.M. Hamilton and L.E. Goodman, The stress field created by a circular sliding contact, Journal of Applied Mechanics, 33 (1966) 371-376.

DOI: 10.1115/1.3625051

Google Scholar

[63] J. M. Challen and P.L.B. Oxley, Wear, Vol. 53 (1979) 229-243.

Google Scholar

[64] F.P. Bowden, D. Tabor. The friction and lubrication of solids. Part I. Oxford: Clarendon Press; 1950 [Part II 1964].

DOI: 10.1016/0160-9327(66)90047-0

Google Scholar