Grinding Burn and Chatter Classification Using Genetic Programming

Article Preview

Abstract:

This paper looks at the multiple characteristics and investigations of two grinding anomalies: grinding burn and grinding chatter. A genetic programming (GP) of multiple classifications was investigated for different machining strategies and associated anomaly phenomena. Such a GP paradigm could evolve rules to provide the correlation between monitored signals and grinding phenomena. The investigation also looks at both Short-Time Fourier Transforms (STFT) and Wavelet Packet Transforms (WPT) to convert the raw acoustic emission (AE) signal into a time based frequency signal, segmented into different frequency bands. A set of encouraging results is presented.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 389-390)

Pages:

90-95

Citation:

Online since:

September 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Chen, Q. Liu: The 3rd Int. Conf. and Exhibition on Design and Manufacturing of Die and Moulds, 7th Int. Symposium on Advances in Abrasive Technology, (2004), pp.461-469.

Google Scholar

[2] I. Inasaki, B. Karpuschewski, et al.: CIRP Annals - Manufacturing Technology, Vol. 50 (2001), pp.515-534.

Google Scholar

[3] S. Fu, J. Raja, et al.: Precision Engineering, Vol. 26 (2002), pp.222-235.

Google Scholar

[4] X. Chen, W. B. Rowe, et al.: Proceedings of the MechE Part B - Journal of Engineering Manufacture, Vol. 210 (1996), pp.349-352.

Google Scholar

[5] G. B. Oscar, R. Eduardo, et al.: International Journal of Machine Tools & Manufacture Vol. 46 (2006), p.1934-(1938).

Google Scholar

[6] H. K. Tonshoff, K. T. Friemuth: CIRP Annals Vol. 51 (2002), pp.551-571.

Google Scholar

[7] H. Y. Kim, et al.: Journal of Materials Processing Technology, Vol. 111 (2001), pp.273-278.

Google Scholar

[8] J. Gradišek, A. Baus, et al.: International Journal of Machine Tools and Manufacture, Vol. 43 (2003), pp.1397-1403.

Google Scholar

[9] M. A. Mohandes, et al.: Renewable Energy, Vol. 29 (2004), pp.939-947.

Google Scholar

[10] Yingjie Wang, et al.: Pattern Recognition Letters, Vol. 23 (2002), pp.1191-1202.

Google Scholar

[11] J.A.K. Suykens, et al.: Least Squares Support Vector Machines (World Sciencetific Publishing Co. Pte. Ltd. 2002).

Google Scholar

[12] X. Chen, T. Limchimchol: International Journal of Automation and Computing, Vol. 3 (2006), pp.56-62.

Google Scholar

[13] T. Limchimchol, J. Griffin, X. Chen: Proceedings of the 12th Chinese Automation & Computing Society Conference in the UK, England, (2006), pp.217-222.

Google Scholar

[14] Peleckmans, K., J. A. K. Suykens, et al. in: ESAT-SCD-SISTA Technical Report 02-145, Katholieke Universiteit Leuven, Belgium (2003). http: /www. esat. kuleuven. ac. be/sista/lssvmlab/ version 1. 5.

Google Scholar

[15] V. N. Vapnik: Statistical learning Theory. (John Wiley & Sons. 1998).

Google Scholar

[16] Tay, E., E. H. Francis, et al.: Omega Vol. 29 (2001), pp.35-49.

Google Scholar

[17] A. Hyvarinen, E. Oja: Neural Networks Vol. 13 (2000), 411-430.

Google Scholar

[18] S. Silva, in: A Genetic Programming Toolbox for Matlab - version 2. (ECOS - Evolutionary and Complex Systems Group, University of Coimbra, Portugal, 2004), http: /gplab. sourceforge. net.

Google Scholar

[19] M. Barbezat, A. J. Brunner, et al.: Sensors and Actuators a-Physical Vol. 114 (2004), pp.13-20.

Google Scholar

[20] J. Griffin, X. Chen: The Proc. of the 4 th International Conference on Manufacturing Research, (2006), pp.217-222.

Google Scholar