[1]
I. Dumitru, L. Marsavina - , Introducere in Mecanica Ruperii' - Ed. Mirton, (2001).
Google Scholar
[2]
, NASGRO - Fracture Mechanics and Fatigue Crack Growth Analysis Software' - Reference Manual, Version 4. 02, Sept. (2002).
Google Scholar
[3]
Willenborg J., Engle R.M. and Wood H.A. - , A crack Growth Retardation Model Using an Effective Stress Concept', AFFDL-TM-71-1-FBR, Wright Patterson Air Force Laboratory, ian. (1971).
DOI: 10.21236/ada956517
Google Scholar
[4]
Gallagher J.P., - , A Generalized Development of Yield Zone Models', AFFDL-TM-74-28FBR, Wright Patterson Air Force Laboratory, ian. (1974).
Google Scholar
[5]
Gallagher J.P., Hughes T.F. - , Influence of Yield Strength on Overload Affected Fatigue Crack Growth Behavior in 4340 Steel', AFFDL-TM-74-27-FBR, Wright Patterson Air Force Laboratory, februarie (1974).
DOI: 10.21236/ad0787655
Google Scholar
[6]
Frediani - , Experimental results forwarded to JSC by ESA', University of PISA.
Google Scholar
[7]
Wanhill, R. J. H., - , Low Stress Intensity Fatigue Crack Growth in 2024 - T3 and T351', Engineering Fracture Mechanics, Vol. 30, (1998).
DOI: 10.1016/0013-7944(88)90227-5
Google Scholar
[8]
Larson, B. F., - , C-17 Material Specimen Tests for Fracture Mechanics Data. Phase I, Lot 1 Aluminum Alloys.
Google Scholar
[9]
Kahandal, R. S., , C-17 Material Specimen Tests for Fracture Mechanics Data. Phase I, Lot 2 Aluminum Alloys.
Google Scholar