High Temperature Oxidation of SiC Powder in Oxidizing Atmosphere Containing Water Vapor

Article Preview

Abstract:

Oxidation of SiC powder was studied at 1373 K to 1873 K in Ar-O2, Ar-H2O, and Ar-O2-H2O using thermogravimetry. At 1373 K to 1573K, the weight gain increased with increasing water vapor pressure. The oxidation rate was evaluated on the basis of the Ginstering-Brounshtein kinetic model. In this temperature region, the apparent activation energy for the oxidation was almost the same (139-191 kJmol-1) independent of the atmosphere, suggesting that the same oxidation process proceeds. On the other hand, at temperatures >1673 K, the weight gain in the dry O2 (Ar-O2) was greater than that in the wet and wet O2 (Ar-H2O and Ar-O2-H2O). The apparent activation energy in the dry O2 (442 kJmol-1) was much greater than that in the wet and wet O2. We propose that water molecule diffused in silica layer in the wet and wet O2 atmosphere at 1373 K to 1873 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-200

Citation:

Online since:

December 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. S. Jacobson: J. Am. Ceram. Soc. Vol. 76 (1993), p.3.

Google Scholar

[2] R. C. Robinson: J. Am. Ceram. Soc. Vol. 82 (1999) p.1817.

Google Scholar

[3] E. J. Opila, J. L. Smialek, R. C. Robinson, E. S. Fox, and N. S. Jacobson: J. Am. Ceram. Soc. Vol. 82 (1999) p.1826.

Google Scholar

[4] H. Suzuki: Yogyo Kyoukai Shi Vol. 67 (1959) p.157.

Google Scholar

[5] P. J. Jorgensen, M. E. Wadsworth, and I. B. Cutler: J. Am. Ceram. Soc. Vol. 44 (1961) p.258.

Google Scholar

[6] H. Cappelen, K.H. Johansen, and K. Motzfeldt: Acta Chemica Scandinavica A Vol. 35 (1981) p.247.

Google Scholar

[7] M. Maeda, K. Nakamura, and T. Ohkubo: J. Mater. Sci. Vol. 23 (1988) p.3933.

Google Scholar

[8] M. Ishikawa, Y. Nakano, S. Ishida, N. Takeuchi, M. Wakamatsu, and K. Watanabe: J. Ceram. Soc. Jpn., Vol. 100 (1992) p.1200.

Google Scholar

[9] E. J. Opila: J. Am. Ceram. Soc. Vol. 77 (1994) p.730.

Google Scholar

[10] E. J. Opila and R. E. Hann Jr.: J. Am. Ceram. Soc. Vol. 80 (1997) p.197.

Google Scholar

[11] E. J. Opila: J. Am. Ceram. Soc. Vol. 82 (1999) p.625.

Google Scholar

[12] K. L. More, P. F. Tortorelli, M. K. Ferber, and J. R. Keiser: J. Am. Ceram. Soc. Vol. 83 (2000) p.211.

Google Scholar

[13] T. Narushima, T. Goto, Y. Iguchi, and T. Hirai: J. Am. Ceram. Soc., Vol. 73 (1990) p.3580.

Google Scholar

[14] A. M. Ginstling, and B. I. Brounshtein: J. Appl. Chem. U.S.S.R. Vol. 23 (1950) p.1327.

Google Scholar

[15] T. Akashi and M. Kasajima: to be submitted.

Google Scholar