In Situ Synthesis and Mechanical Properties of TiN-Si2N2O-Si3N4 Composites

Article Preview

Abstract:

Si3N4-Si2N2O-TiN composite ceramics were in-situ fabricated by using following reactions of (1) 3TiO2 + Si3N4 → 3TiN + 3SiO2 + N2 and (2) Si3N4+ SiO2 → 2Si2N2O. The mixed powder of α-Si3N4, Al2O3, Y2O3 and TiO2 was hot-pressed at 24 MPa and 1800°-1900°C for 1-4 h in N2. Sintered composite ceramics were characterized by XRD, SEM, TEM, four-point bending test and Vickers indentation method. XRD results and TEM observation showed that TiN and amorphous SiO2 were formed at 1250°C by the reaction (1), and the Si2N2O phase formed by reaction (2) above 1800°C. Si3N4-Si2N2O-TiN composites consisted of ≥2 m sized Si2N2O grains with TiN and Si3N4 grains. Hardness and fracture strength of the composites were comparable to those of Si2N2O ceramics, with fracture toughness being improved at 5vol% TiN containing composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-230

Citation:

Online since:

December 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. L. Riley, J. Am. Ceram. Soc., 83, (2000) 245-265.

Google Scholar

[2] A. Bellosi, S. Guicciardi and A. Tampieri, J. Eur. Ceram. Soc., 9, (1992) 83-92.

Google Scholar

[3] A. Kaiser, R. Vassen, D. Stover, H. Buchkremer and P. W. Kesternich, Silicates Industries, 61, (1996) 111-115.

Google Scholar

[4] A. H. Jones, R. S. Dobedoe and M. H. Lewis, J. Eur. Ceram. Soc., 21, (2001) 969-980.

Google Scholar

[5] R. G. Wang, W. Pan, J. Chen, M. N. Jiang, and M. H. Fang, Mater. Res. Bull., 37, (2002) 1269-1277.

Google Scholar

[6] S. Kawano, J. Takahashi and S. Shimada, J. Eur. Ceram. Soc., 24 (2004) 309-312.

Google Scholar

[7] J. Tatami, I. W. Chen, Y. Yamamoto, M. Komastu, K. Komeya, D. K. Kim, T. Wakihara and T. Meguro, J. Ceram. Soc. Japan, 114, (2006) 1049-1053.

DOI: 10.2109/jcersj.114.1049

Google Scholar

[8] R. Larker, J. Am. Ceram. Soc., 75, (1992) 62-66.

Google Scholar

[9] R. J.; Xie, M. Mitomo, F. F. Xu, G. D. Zhan, Y. Bando and Y. Akimune, J. Eur. Ceram. Soc., 22, (2002) 963-971.

Google Scholar

[10] R. G. Duan, G. Roebben, J. Vleugels and O. Van der Biest, J. Eur. Ceram. Soc., 22, (2002) 2527-2535.

Google Scholar

[11] R. G. Duan, G. Roebben, J. Vleugels and O. Van der Biest, Acta Materialia, 53, (2005) 2547-2554.

DOI: 10.1016/j.actamat.2005.01.021

Google Scholar

[12] H. Kiyono, Y. Noritake and S. Shimada, Trans. Mater. Soc. Japan, 32, (2007).

Google Scholar

[10] [15] [20] [25] [0] [5] [1] 0.

Google Scholar

500 1000 1500 Si3N4.

Google Scholar

[7] 5L (a) (b) (c) GPa MPa MPa ・ m1/2 Si2N2O TN3.

Google Scholar

[5] 10 13 Sample Fig. 5. Mechanical properties of (a) fracture strength, (b) hardness and (c) fracture toughness for the composites with literature values of monolithic Si3N4 and Si2N2O ceramics.

Google Scholar

[10] [15] [20] [25] [0] [5] [1] 0.

Google Scholar

500 1000 1500 Si3N4.

Google Scholar

[7] 5L (a) (b) (c) GPa MPa MPa ・ m1/2 Si2N2O TN3.

Google Scholar

[5] 10 13 Sample.

Google Scholar