[1]
G.F. Peng and Z.S. Huang: Change in microstructure of hardened cement paste subjected to elevated temperatures, Construction and Building Materials, Vol. 22 (2008), pp.593-599.
DOI: 10.1016/j.conbuildmat.2006.11.002
Google Scholar
[2]
B.A. Schrefler, P. Brunello, D. Gawin, C.E. Majorana and F. Pesavento: Concrete at high temperature with application to tunnel fire, Computational Mechanics, Vol. 91 (2002), pp.43-51.
DOI: 10.1007/s00466-002-0318-y
Google Scholar
[3]
Z.F. Huang, K.H. Tan and G.H. Phng: Axial restraint effects on the fire resistance of composite columns encasing I-section steel, Journal of Constructional Steel Research, Vol. 63 (2007), pp.437-447.
DOI: 10.1016/j.jcsr.2006.07.001
Google Scholar
[4]
D. Gawin, F. Pesavento and B.A. Schrefler: Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete, Computer Methods in Applied Mechanics and Engineering, Vol. 195 (2006), pp.5707-5729.
DOI: 10.1016/j.cma.2005.10.021
Google Scholar
[5]
D.D. Capua and A.R. Mari: Nonlinear analysis of reinforced concrete cross-sections exposed to fire, Fire Safety Journal, Vol. 42 (2007), pp.139-149.
DOI: 10.1016/j.firesaf.2006.08.009
Google Scholar
[6]
Z. Huang, A. Platten and J. Roberts: Non-linear finite element model to predict temperature histories within reinforced concrete in fires, Building and Environment, Vol. 31 (1996), pp.109-118.
DOI: 10.1016/0360-1323(95)00041-0
Google Scholar
[7]
D. Gawin, F. Pesavento and B.A. Schrefler: Simulation of damage-permeability coupling in hygro-thermo mechanical analysis of concrete at high temperature, Communications in Numerical Methods in Engineering, Vol. 18 (2002), pp.113-119.
DOI: 10.1002/cnm.472
Google Scholar
[8]
X. Li, R. Li and B.A. Schrefler: A coupled chemo-thermo-hygro-mechanical model of concrete at high temperature and failure analysis, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 30 (2006), pp.635-681.
DOI: 10.1002/nag.495
Google Scholar
[9]
L. Lim, A. Buchanan, P. Moss and J.M. Franssen: Numerical modelling of two-way reinforced concrete slabs in fire, Engineering Structures, Vol. 26 (2004), pp.1081-1091.
DOI: 10.1016/j.engstruct.2004.03.009
Google Scholar
[10]
A.S. Usmani and N.J. Cameron: Limit capacity of laterally restrained reinforced concrete floor slabs in fire, Cement and Concrete Composites Fire Resistance, Vol. 26 (2004), pp.127-140.
DOI: 10.1016/s0958-9465(03)00090-8
Google Scholar
[11]
A.M. Sanad, S. Lamont, A.S. Usmani and J.M. Rotter: Structural behaviour in fire compartment under different heating regimes - Part 1 (slab thermal gradients), Fire Safety Journal, Vol. 35 (2000), pp.99-116.
DOI: 10.1016/s0379-7112(00)00024-2
Google Scholar
[12]
M.M. El-Hawary, A.M. Ragab and K.M. Osmans: Behavior investigation of concrete slabs subjected to high temperatures, Computers & Structures, Vol. 61 (1996), pp.345-360.
DOI: 10.1016/0045-7949(96)00061-2
Google Scholar
[13]
N. Bicanic, C. Pearce and C. Davie: computational modelling of safety critical concrete structures at elevated temperatures, Extreme Man-Made and Natural Hazards in Dynamics of Structures, (2007). pp.163-176.
DOI: 10.1007/978-1-4020-5656-7_6
Google Scholar
[14]
S. Bratina, B. Cas, M. Saje and I. Planinc: Numerical modelling of behaviour of reinforced concrete columns in fire and comparison with Eurocode 2. International Journal of Solids and Structures, Vol. 42 (2005), pp.5715-5733.
DOI: 10.1016/j.ijsolstr.2005.03.015
Google Scholar
[15]
X.X. Zha: Three-dimensional non-linear analysis of reinforced concrete members in fire, Building and Environment, Vol. 38 (2003), pp.297-307.
DOI: 10.1016/s0360-1323(02)00059-8
Google Scholar
[16]
J.H. Chung and G.R. Consolazio: Numerical modeling of transport phenomena in reinforced concrete exposed to elevated temperatures, Cement and Concrete Research, Vol. 35 (2005), pp.597-608.
DOI: 10.1016/j.cemconres.2004.05.037
Google Scholar
[17]
Z.P. Bažant and M.F. Kaplan: Concrete at High Temperatures: Material Properties and Mathematical Models, (1996) Longman-Addison-Wesley, London.
Google Scholar
[18]
X. Liu: Microstructural Investigation of Self-Compacting Concrete and High-Performance Concrete during Hydration and after Exposure to High Temperatures, Ph.D. Thesis (2006), Ghent University, Belgium.
Google Scholar
[19]
S.D. Pont, B.A. Schrefler and A. Ehrlacher: Intrinsic permeability evolution in high temperature concrete: An experimental and numerical analysis, Transport in Porous Media, Vol. 60 (2005), pp.43-74.
DOI: 10.1007/s11242-004-3252-y
Google Scholar
[20]
D. Gawin, F. Pesavento and B.A. Schrefler: Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation, Computer Methods in Applied Mechanics and Engineering, Vol. 192 (2003).
DOI: 10.1016/s0045-7825(03)00200-7
Google Scholar
[21]
P. Kalifa, F.D. Menneteau and D. Quenard: Spalling and pore pressure in HPC at high temperature, Cement and Concrete Research, Vol. 30 (2000), p.1915-(1927).
DOI: 10.1016/s0008-8846(00)00384-7
Google Scholar
[22]
Y. Ichikawa and G.L. England: Prediction of moisture migration and pore pressure build-up in concrete at high temperatures. Nuclear Engineering and Design, Vol. 228 (2004), pp.245-259.
DOI: 10.1016/j.nucengdes.2003.06.011
Google Scholar
[23]
G.L. England and N. Khoylou: Moisture flow in concrete under steady state non-uniform temperature states: experimental observations and theoretical modelling, Nuclear Engineering and Design, Vol. 156 (1995), pp.83-107.
DOI: 10.1016/0029-5493(94)00937-t
Google Scholar
[24]
Y.F. Houst and F.H. Wittmann: Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste, Cement and Concrete Research, Vol. 24 (1994), pp.1165-1176.
DOI: 10.1016/0008-8846(94)90040-x
Google Scholar
[25]
S.Y.N. Chan, G.F. Peng and M. Snson: Fire Behavior of High-Performance Concrete Made with Silica Fume at Various Moisture Contents, ACI Materials Journal (1999), pp.405-411.
DOI: 10.14359/640
Google Scholar
[26]
G.F. Peng, W.W. Yang and J. Zhao: Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures, Cement and Concrete Research, Vol. 36 (2006), pp.723-727.
DOI: 10.1016/j.cemconres.2005.12.014
Google Scholar
[27]
S.H. Bian and G.F. Peng: Effect of Various Moisture Contents and hybrid fiber (polypropylene fiber plus steel fiber) on Explosive Spalling and Residual Compressive Strength of High Performance Concrete Subjected to High Temperatures, Key Engineering Materials, Vol. 302-303 (2005).
DOI: 10.4028/www.scientific.net/kem.302-303.618
Google Scholar
[28]
R. Tenchev and P. Purnell: An application of a damage constitutive model to concrete at high temperature and prediction of spalling, International Journal of Solids and Structures, Vol. 42 (2005), pp.6550-6565.
DOI: 10.1016/j.ijsolstr.2005.06.016
Google Scholar
[29]
D. Gawin, F. Pesavento and B.A. Schrefler: Comments to the paper An application of a damage constitutive model to concrete at high temperature and prediction of spalling, by Rosen Tenchev and Phil Purnell [Int. J. Solids Struct. 42 (26) (2005).
DOI: 10.1016/j.ijsolstr.2006.10.013
Google Scholar
[30]
N.J. Carino and L.T. Phan: Code provisions for high strength concrete strength-temperature relationship at elevated temperatures, Materials and Structures, Vol. 36 (2003), pp.91-98.
DOI: 10.1007/bf02479522
Google Scholar
[31]
Y.N. Chan, G.F. Peng and M. Anson: Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures, Cement and Concrete Composites, Vol. 21 (1999), pp.23-27.
DOI: 10.1016/s0958-9465(98)00034-1
Google Scholar
[32]
A.M. Sanad, J.M. Rotter, A.S. Usmani and M.A. O'Connor: Composite beams in large buildings under fire - numerical modelling and structural behaviour, Fire Safety Journal, Vol. 35 (2000), pp.165-188.
DOI: 10.1016/s0379-7112(00)00034-5
Google Scholar
[33]
A.M. Sanad, S. Lamont, A.S. Usmani and J.M. Rotter: Structural behaviour in fire compartment under different heating regimes - part 2: (slab mean temperatures). Fire Safety Journal, Vol. 35 (2000), pp.117-130.
DOI: 10.1016/s0379-7112(00)00025-4
Google Scholar
[34]
G.F. Peng, S.H. Bian, Z.Q. Guo and J. Zhao: Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures, Construction and Building Materials, Vol. 22 (2008), pp.948-955.
DOI: 10.1016/j.conbuildmat.2006.12.002
Google Scholar