The Effect of Neutron Irradiation on the Mechanical Properties of Advanced Silicon Nitride Nanocomposites

Article Preview

Abstract:

There is a continuous need to develop structural and functional components to sustain fusion plasma under the very severe environment such as intense radiation or high temperature in fusion reactors. The reference Si3N4 and novel Si3N4 based nanocomposites with carbon nanotube, graphene or carbon black additions were irradiated in a controlled-temperature irradiation rig inside the Budapest Research Reaktor (BRR) at a temperature of 270 °C. In the irradiation channel of BRR the 1,5×1013 n/cm2 fluence can be reached in 700 hours. The effect of the neutron radiation on the mechanical properties of Si3N4 based nanocomposites with different carbon additives was investigated. In the case of 3-point bending test graphene and carbon nanotube added samples showed an increase in strength ~100-300 MPa after irradiation. 4-point bending strength measurements resulted in a significant increase of strength in the case of reference samples ~200-400 MPa and carbon nanotube added composites ~200-300 MPa after irradiation. Other samples showed no change in strength after irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-243

Citation:

Online since:

March 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Yamamoto, T. Shikama, V. Belyakov, E. Farnum et al.: J. Nucl. Mater. Vol. 283-287 (2000), p.60.

Google Scholar

[2] M. Decreton, T. Shikama and E. Hodgson: J. Nucl. Mater. Vol. 329- 333 (2004), p.125.

Google Scholar

[3] R. Aymar et al.: J. Nucl. Mater. Vol. 307-311 (2002), p.1.

Google Scholar

[4] D. Campbell, M. Gasparotto, D. Maisonnier et al.: J. Nucl. Mater. Vol. 307-311 (2002), p.10.

Google Scholar

[5] M. Akiyoshi, T. Yano: Progress in Nuclear Energy Vol. 50 (2008), p.567.

Google Scholar

[6] M. Akiyoshi, T. Yano, Y. Tachi and H. Nakano: J. Nuc. Mat. Vol. 367-370 (2007), p.1023.

Google Scholar

[7] F.W. Clinard Jr, G.F. Hurley and R.W. Klaffky: Res. Mech. Vol. 8 (1983), p.207.

Google Scholar

[8] R.A. Youngman and T.E. Mitchell: Rad. Eff. Vol. 74 (1983), p.267.

Google Scholar

[9] F.W. Clinard Jr. and L.W. Hobbs, Physics of Radiation Effects in Crystals, edited by R.A. Johnson and A.N. Orlov, p.425 (Elsevier, Amsterdam).

Google Scholar

[10] G.F. Hurley and J.M. Bunch: Am. Ceram. Soc. Bull Vol. 59 (1980), p.456.

Google Scholar

[11] L.W. Hobbs: J. Am. Ceram. Soc Vol. 62 (1979), p.267.

Google Scholar

[12] F.W. Clinard Jr., G.F. Hurley, L.W. Hobbs et al.: J. Nucl. Mater Vol. 122-123 (1984), p.1386.

Google Scholar

[13] G.F. Hurley, F.H. Cocks: Ceram. Bull Vol. 60 (1981), p.1302.

Google Scholar

[14] S. Rochie: Ann. Chim. Sci. Mater., Vol. 25 (2000), p.529.

Google Scholar

[15] R.Z. Ma, J. Wu, B.Q. Wei, J. Liang and D.H. Wu: J Mater Sci, Vol. 33 (1998), p.5243.

Google Scholar

[16] Cs. Balazsi, Z. Konya, F. Weber, L.P. Biro and P. Arato: Mater. Sci. Eng. C Vol. 23 (2003), p.1133.

Google Scholar

[17] R. Poyato et. al., Nanotechnology Vol. 17 (2006) p.1770.

Google Scholar

[18] S. Pasapuleti et. al.: Mat. Sci. Eng. A Vol. 491 (2008), p.224.

Google Scholar

[19] Cs. Balazsi et al.: Composites: Part B Vol. 37 (2006), p.418.

Google Scholar

[20] Cs. Balázsi, F. Wéber, Zs. Kövér, Z. Shen et al.: Current Appl. Phys. Vol. 6 (2006), p.124.

Google Scholar

[21] Cs. Balázsi, K. Sedlácková and Zs. Czigány: Comp. Sci. and Techn. Vol. 68 (2008), p.1596.

Google Scholar

[22] Cs. Balázsi, Nanocomposites: Preparation, Properties and Performance, Ed. By Lorenzo H. Mancini and Christian L. Esposito, (Nova Science Publs., 2008, ISBN: 978-1-60456-798-4).

Google Scholar

[23] A.K. Geim and K.S. Novoselov: Nature Mat., Vol 6 (2007), p.183.

Google Scholar

[24] M.S. Dresselhaus and G. Dresselhaus: Adv. Phys. Vol. 51 (2002), p.1.

Google Scholar

[25] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara and M. Ohba: Carbon Vol. 42 (2004), p.2929.

Google Scholar

[26] M.F. Yu, O. Lourie, K. Moloni, T.F. Kelly and R.S. Ruoff: Science Vol. 287 (2000), p.637.

Google Scholar

[27] Z. Kónya et. al. : Chem. Phys. Lett. Vol. 360 (2002), p.429.

Google Scholar

[28] R. Pelli and K. Törrönen: AMES report no. 2, EUR 16278 EN, European Commission, Luxembourg; (1995).

Google Scholar