On a Simplified Model for the Tool and the Sheet Contact Conditions for the SPIF Process Simulation

Abstract:

Article Preview

The numerical simulation of the Single Point Incremental Forming process (SPIF) is time consuming due to the necessity to take into account various non-linearity such as the material behaviour, large strain deformation and the evolution of the tool-flange contact. Classical contact algorithms give good agreement with experimental results, but are time consuming. In this paper, we investigate the development of a procedure to simplify the management of the contact interface between the tool and the sheet. Nodes with imposed displacements are determined by a geometrical approximation of the deformed sheet. In order to have a better approximation of the local stresses in the flange, a pressure is applied on the tool side of the elements in the contact zone. The pressure value is obtained by an analytical model. A classical contact algorithm and the present simplified approach are compared in terms of an incremental forming benchmark. It has been shown that, for the benchmark problem studied here, a CPU time reduction of approximately 65% can be achieved while at the same time have good simulation results.

Info:

Periodical:

Key Engineering Materials (Volumes 410-411)

Main Theme:

Edited by:

B. Shirvani, R. Clarke, J. Duflou, M. Merklein, F. Micari and J. Griffiths

Pages:

373-379

DOI:

10.4028/www.scientific.net/KEM.410-411.373

Citation:

C. Robert et al., "On a Simplified Model for the Tool and the Sheet Contact Conditions for the SPIF Process Simulation", Key Engineering Materials, Vols. 410-411, pp. 373-379, 2009

Online since:

March 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.