Textured α-Alumina through Electrophoretic Deposition and Templated Grain Growth

Article Preview

Abstract:

The development of texture was studied during electrophoretic deposition in alumina suspensions containing plate shaped alumina particles. The mechanism of platelet orientation during EPD was examined with respect to the influence of the electric field, gravity and hydrodynamic forces. This was realized by using two different deposition cells, with vertically or horizontally positioned deposition electrode. The texture of the green deposit was further enhanced during sintering by templated grain growth in which the platelet shaped alumina particles were growing at the expense of the fine grained matrix. The sharp ‘fiber texture’ obtained after templated grain growth during sintering of the deposit was characterized by means of x-ray diffraction and Electron Backscatter Diffraction (EBSD).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-266

Citation:

Online since:

June 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Randle, O. Engler: Introduction to texture analysis (Gardon and Breach Science Publishers, Australia 2000).

Google Scholar

[2] Y. Zhou, J. Vleugels, T. Laoui, O. Van der Biest, , J. Eur. Ceram. Soc, Vol. 15 (1995), p.297.

Google Scholar

[3] P. W. Hall, J. S. Swinnea, D. Kovar, J. Am. Ceram. Soc, Vol. 84 (2001), p.1514.

Google Scholar

[4] T. Carisey, I. Levin, D. G. Brandon, J. Eur. Ceram. Soc, Vol. 15 (1995), p.283.

Google Scholar

[5] M. M. Seabaugh, I. H. Kerscht, G. L. Messing, J. Am. Ceram. Soc, Vol. 80 (1997), p.1181.

Google Scholar

[6] E. Suvaci, G. L. Messing, J. Am. Ceram. Soc, Vol. 83 (2001), p. (2041).

Google Scholar

[7] M. M. Seabaugh, G. L. Messing, J. Am. Ceram. Soc, Vol. 83 (2000), p.3109.

Google Scholar

[8] M. Wei, D. Zhi, D. G. Brandon, Scripta Materialia, Vol. 53 (2005), p.1327.

Google Scholar

[9] I. O. Ozer, E. Suvaci, B. Karademir, J. M. Missiaen, C. P. Carry, D. Bouvard, J. Am. Ceram. Soc, Vol. 89 (2006), p. (1972).

Google Scholar

[10] P. Sarkar, P. S. Nicholson, J. Am. Ceram. Soc., Vol. 79 (1996), p. (1987).

Google Scholar

[11] Y. Filada, N. Nagarajan, W. Mekky, Y. Bao, H. S. Kim, J. Mater. Sci. Vol. 39 (2004), p.787.

Google Scholar

[12] G. H. Wang, P. Sarkar, P.S. Nicholson, J. Am. Ceram. Soc, Vol. 80 (1997), p.965.

Google Scholar

[13] F. K. Lotgering, J. Inorg. Nucl. Chem., Vol. 9 (1959), p.113.

Google Scholar

[14] I. E. Gönenli, G. L. Messing, J. Eur. Ceram. Soc, Vol. 21(2001), p.2495.

Google Scholar

[15] H. J. Bunge: Texture analysis in materials science : mathematical models (Cuvillier Verlag, Göttingen 1993).

Google Scholar

[16] G. V. Franks, Y. Gan, J. Am. Ceram. Soc, Vol. 90 (2007), p.3373.

Google Scholar

[17] N. A. Mody, O. Lomakin, T.A. Doggett, T. G. Diacovo, M. R. King, Biophysical Journal, Vol. 88 (2005), p.1432.

Google Scholar

[18] L. Harnau , S. Dietrich, Physical review E, Vol. 65 (2002), 021505.

Google Scholar

[19] E. Dimasi, J. O. Fossum, T. Gog, C. Venkataraman, Physical review E, Vol. 64 (2001), 061704.

Google Scholar

[20] F. M. van der Kooij, H. N. W. Lekkerkerker, J. Phys. Chem. Vol. 102 (1998), p.7829.

Google Scholar