Contact Fatigue Crack Growth in PVD-Coated Spur Gears

Article Preview

Abstract:

The aim of this work is to investigate the (rolling) contact fatigue behaviour of transmission spur gears coated with PVD (Physical Vapour deposition) thin hard films. Numerical models of coated steel and titanium spur gears were developed. The effect of the residual stress gradient induced by the coating deposition process was considered in the calculations. A theoretical-numerical procedure was arranged to foresee the crack propagation direction. Such a procedure could represent a powerful tool to predict the (rolling) contact fatigue resistance of PVD-coated gears.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 417-418)

Pages:

797-800

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Stewart, R. Ahmed: Wear Vol. 235 (2002), pp.1132-1144.

Google Scholar

[2] K.R. Kim, C.M. Suh, R.I. Murakami, C.W. Chung: Surf. Coat. Technol. Vol. 171 (2003), pp.15-23.

Google Scholar

[3] S. Baragetti, G.M. La Vecchia, A. Terranova: Int. J. Fat. Vol. 27(10-12) (2005), pp.1541-1550.

Google Scholar

[4] S. Baragetti: Int. J. Fat. Vol. 29 (2007), p.1893-(1903).

Google Scholar

[5] ASM Metals Handbook, edited by ASM International, 10th ed., Materials Park, OH (1993).

Google Scholar

[6] I.A. Polonsky, L.M. Keer: Trans. ASME J. Tribol. Vol. 124 (2002), pp.14-19.

Google Scholar

[7] K. -D. Bouzakis, A. Siganos: Surf. Coat. Technol. Vol. 185 (2004), pp.150-159.

Google Scholar

[8] K. -D. Bouzakis, A. Asimakopoulos, M. Batsiolas: Surf. Coat. Technol. Vol. 202 (2008), p.59295935.

Google Scholar

[9] S. Glodež, B. Aberšek, J. Flašker, Z. Ren: Engng. Fract. Mech. Vol. 71 (2004), pp.429-438.

Google Scholar

[10] K. Aslantaş, S. Taşgetiren: Wear Vol. 257 (2004), pp.1167-1175.

Google Scholar

[11] M. Šraml, J. Flašker: Int. J. Adv. Manuf. Technol. Vol. 31 (2007), pp.1066-1075.

Google Scholar

[12] G. Fajdiga, S. Glodež, J. Kramar: Wear Vol. 262 (2007), pp.1217-1224.

Google Scholar

[13] G. Fajdiga, Z. Ren, J. Kramar: Engng. Fract. Mech. Vol. 74 (2007), pp.2721-2734.

Google Scholar

[14] S. Baragetti, A. Terranova, F. Tordini: Key Engineering Materials Vol. 385-387 (2008), pp.57-60.

DOI: 10.4028/www.scientific.net/kem.385-387.57

Google Scholar

[15] M. Gubish. Y. Liu, L. Spiess, H. Romanus, S. Krischok, G. Ecke, J.A. Schaefer, Ch. Knedlik: Thin Sol. Films Vol. 448 (2005), pp.132-139.

DOI: 10.1016/j.tsf.2005.04.107

Google Scholar

[16] O. Wänstrand, M. Larsson, P. Hedenqvist: Surf. Coat. Technol. Vol. 111 (1999), pp.247-254.

Google Scholar

[17] ASTM E 112-96, Annual book of ASTM standard (1996).

Google Scholar

[18] M. Kato, G. Deng, K. Inoue, N. Takatsu: JSME Int. J-Series C Vol. 36(2) (1993), pp.233-240.

Google Scholar

[19] T.A. Solzak, A.A. Polycarpou: Surf. Coat. Technol. Vol. 201 (2006), pp.4260-4265.

Google Scholar

[20] Y. Murakami, M. Endo: Int. J. Fat. Vol. 16 (1994), pp.519-533.

Google Scholar

[21] M.H. El-Haddad, K.N. Smith, T.H. Topper: ASME J. Eng. Mater. Technol. Vol. 101 (1979), pp.42-46.

Google Scholar