[1]
J Mac Queen. Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 281-297.
Google Scholar
[2]
J. C Bezdek. Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York. (1981).
Google Scholar
[3]
J. Yu, Q. Cheng, H. Huang: Analysis on weighting exponent in the FCM. IEEE Transactions on SMC, Part B-Cybernetics, 2004, 31: 634-639.
DOI: 10.1109/tsmcb.2003.810951
Google Scholar
[4]
E. Knorr, R. Ng, T. Tucakov. Distance-based outliers: Algorithms and applications. VLDB Journal, 2000, 8(3-4): 237-253.
DOI: 10.1007/s007780050006
Google Scholar
[5]
F. Angiulli, C. Pizzuti. Outlier Mining in Large High-Dimensional Data Sets. IEEE Transactions on Knowledge and Data Engineering, (2005).
DOI: 10.1109/tkde.2005.31
Google Scholar
[6]
S. Papadimitriou, H. Kitagawa, P. B. Gibbons, C. Faloutsos. Fast Outlier Detection Using the Local Correlation Integral. In: Proc 2003 Int. Conf. Data Engineering (ICDE'03), (2003).
DOI: 10.1109/icde.2003.1260802
Google Scholar
[7]
Wei Tang, Taghi M. Khoshgoftaar: Noise Identification with the k-Means Algorithm. In: proc. of 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'04), 2004, pp.373-378.
DOI: 10.1109/ictai.2004.93
Google Scholar
[8]
S. Harkins, H. He, G. J. Willams, R. A. Baster. Outlier Detection Using Replicator Neural Networks. In: Proc. of 4th International Conference on Data Warehousing and Knowledge Discovery (DaWaK'02), pp.170-180, (2002).
DOI: 10.1007/3-540-46145-0_17
Google Scholar
[9]
C. J. Merz, P. Merphy. UCI Repository of Machine Learning Databases, 1996. (http: /www. ics. uci. edu/~mlearn/MLRRepository. html).
Google Scholar