Structural Effect on the Plastic Behavior in Highly Porous Glasses

Article Preview

Abstract:

Silica aerogels have been studied with the objective of understanding the mechanical behavior of these extremely porous (pore volume higher than 85%) glassy materials. Elastic and plastic behaviors are investigated using Hg porosimetry. Because of the peculiar structure of these materials, Hg liquid cannot enter their porous network and consequently induces an isostatic pressure. Due to the high compliance of the solid network, under isostatic pressure aerogels display an irreversible shrinkage caused by plastic deformation. The magnitude of the plastic shrinkage and the increase of the associated mechanical properties depend on the different parameters (porosity, elastic properties and structural features). The structural features are followed by X Rays scattering. The irreversible compaction can be explained by siloxane bond formation between clusters constituting the porous materials, retaining the strained structure. The pore collapse mechanism is favored by the large pores structure and loose cluster structure (low fractal dimension). This densification process could offer a new way to synthesize porous glasses at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-24

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. W. Rice ed., Porosity of Ceramics, Materials Engineering 12, Marcel Dekker, Inc (1998).

Google Scholar

[2] J. Brinker, G.W. Scherer ed , Sol-Gel Science, Academic. Press, Inc (1990).

Google Scholar

[3] T. Calemczuk, A.M. de Goer, B. Salce, R. Maynard and A. Zarembovitch, Europhys. Lett., 3, (1987) p.1205.

Google Scholar

[4] J. Gross, G. Reichenauer and J. Fricke, J. Phys., D21, (1988) p.1447.

Google Scholar

[5] J.D. Lemay, T.M. Tillotson, H.W. Hrubesch, R.W. Pekala, Mater. Res. Soc. Symp. Proc., 180 (1990) p, 321.

Google Scholar

[6] T. Woignier, J. Phalippou, J. Non-Cryst. Solids, 100, (1988) p.404.

Google Scholar

[7] G.W. Scherer, , J. Non-Cryst. Solids, 144, (1992) p.210.

Google Scholar

[8] R. Pirard, S. Blacher, F. Brouers and J.P. Pirard, J. Mater. Res., 10, (1995) p.1.

Google Scholar

[9] L. Duffours, T. Woignier and J. Phalippou, , J. Non-Cryst. Solids, 194, (1996) p.283.

Google Scholar

[10] G.W. Scherer, D.M. Smith, X. Qiu and J. Anderson, , J. Non-Cryst. Solids, 186, (1995) p.316.

Google Scholar

[11] K.D. Keefer, D.W. Shaeffer, Phys. Rev. Lett., 56 (1986 )p.2376.

Google Scholar

[12] R. Vacher, T. Woignier, J. Pelous, E. Courtens, Phys. Rev. B, 37 (1988 )p.6500.

DOI: 10.1103/physrevb.37.6500

Google Scholar

[13] - G.R. Strobl, Acta Cryst. A26, (1970) p.367.

Google Scholar

[14] T. Woignier, L. Duffours, I. Beurroies, J. Phalippou, P. Delord, V. Gibiat, J. Sol-gel Sci. and Techn. 8 (1997) p.789.

DOI: 10.1023/a:1018334107483

Google Scholar

[15] S. Calas, C. Levelut, T. Woignier J. Pelous , J. Non Cryst. Solids 225 (1998) p.244.

DOI: 10.1016/s0022-3093(98)00124-0

Google Scholar

[16] L. Perin, A. Faivre, S. Calas-Etienne, T. Woignier, J. Non-Cryst solids, 333; (2004) p.68.

DOI: 10.1016/j.jnoncrysol.2003.09.046

Google Scholar

[17] T. Freltof, K.J. Kjems, S.K. Sinha, Phys. Rev. B, 33 (1986) p.269.

Google Scholar

[18] J. Teixeira, J. Appl. Cryst., 21 (1988) p.781.

Google Scholar

[19] T. Woignier, I. Beurroies, P. Delord , V. Gibiat, R. Sempere, J. Phalippou, Eur. Phys. J.A.P. (1999) p.6.

DOI: 10.1051/epjap:1999183

Google Scholar

[20] T. Woignier, J. Reynes, J. Phalippou, J.L. Dussossoy : J. Sol-Gel Sci. Tech . Vol. 19 (2000) p.833.

DOI: 10.1023/a:1008784822052

Google Scholar