Grain Size Strengthening in Microcrystalline Copper: A Three-Dimensional Dislocation Dynamics Simulation

Article Preview

Abstract:

This article reports on a study of the microstructure and mechanical response of copper polycrystals with grain sizes in the micrometer range. Three-dimensional dislocation dynamics simulations are used for the first time to investigate grain boundary strengthening and the Hall-Petch law. The methodology, which involves constructing a microcrystalline representative volume element with periodic boundary conditions, is briefly presented. Simulation results show that the initial density of dislocation sources and the cross-slip mechanism are two key factors controlling the heterogeneity of plastic deformation within the grains. At yield, the smaller the grains size, the more plastic deformation is heterogeneously distributed between grains and homogeneously distributed inside the grains. A size effect is reproduced and it is shown that the Hall-Petch exponent decreases from the very beginning of plastic flow and may reach a stable value at strains larger than the conventional proof stress.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-32

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.O. Hall, Proc. Phys. Soc. London, B64, 747 (1951).

Google Scholar

[2] N.J. Petch, J. Iron Steel Inst., 174, 25 (1953).

Google Scholar

[3] P.G. Sanders, C.J. Youngdahl and J.R. Weertman, Mat. Sci. Eng. A234-236, 77 (1997).

Google Scholar

[4] S. Cheng et al., Acta Mater., 53, 1521 (2005).

Google Scholar

[5] J. SchiØtz and K.W. Jacobsen, Science, 302, 1357 (2003).

Google Scholar

[6] A. Lasalmonie and J. -L. Strudel, J. Mat. Sci. 21, 1837 (1986).

Google Scholar

[7] N. Hansen, Scripta Mater. 51, 801 (2004).

Google Scholar

[8] K.S. Kumar, H. Van Swygenhoven and S. Suresh, Acta Mater., 51, 5743 (2003).

Google Scholar

[9] H. -H. Fu, D.J. Benson and M.A. Meyers, Acta Mater. 49, 2657 (2001).

Google Scholar

[10] J. Eshelby, F. Frank and F.R.N. Nabarro, Phil. Mag. 42, 351 (1951).

Google Scholar

[11] J.C.M. Li and Y.T. Chou, Metall. Mater. Trans. B, 1, 1145 (1970).

Google Scholar

[12] J. Friedel: Dislocations, Pergamon Press, Oxford (1964).

Google Scholar

[13] M. Ashby, Phil. Mag., 21, 324 (1970).

Google Scholar

[14] A.A. Johnson, Phil. Mag., 7, 177 (1962).

Google Scholar

[15] U.F. Kocks, Metall. Trans. 1, 1121 (1970).

Google Scholar

[16] J. Embury: in Strengthening Methods in Crystals, edited by A. Kelly and R.B. Nicholson, Applied Science Publishers, London, p.331 (1971).

Google Scholar

[17] U.F. Kocks and H. Mecking, Progr. Mater. Sci., 48, 171 (2003).

Google Scholar

[18] S. Biner and J. Morris, Phil. Mag. 83, 3677 (2003).

Google Scholar

[19] S. Lefebvre, B. Devincre and T. Hoc, J. Mech. Phys. Solids, 55, 788 (2007).

Google Scholar

[20] D.S. Balint et al., Int. J. Plas. 24, 2149 (2008).

Google Scholar

[21] C. de Sansal: Plasticité et Effet de Taille dans les Polycristaux à Grains Micrométriques: Simulations Mésoscopiques et Modélisation, PhD thesis, Ecole Centrale Paris.

Google Scholar

[22] B. Devincre, T. Hoc and L. Kubin, Science, 320, 1745 (2008).

Google Scholar

[23] L. Kubin, B. Devincre and T. Hoc., Acta Mater. (2004), in press.

Google Scholar

[24] G. Winther, in: Evolution of Deformation Structures in 3D, edited by C. Gundlach et al., Risoe National Laboratory, Roskilde, Denmark, p.211 (2004).

Google Scholar

[25] G. Saada, Phil. Mag. 85, 3003, (2005).

Google Scholar

[26] N. Ohno and D. Okumura, J. Mech. Phys. Solids, 55, 1879 (2007).

Google Scholar