Effect of the Crystalline Phase on the Brittleness Index of Glass Ceramic Surfaces

Article Preview

Abstract:

Different crystalline phases (tetragonal zirconia, titanite, celsian, diopside, anortite, zircon, scheelite, casiterite, gahnite and spodumene) have been devitrificated into a transparent ceramic glaze by addition of oxides that acts as crystallisation agents. Microstructure, wear resistance and gloss of glass ceramic surface obtained on fired modified glazes are studied. All crystalline phases diminish the brittleness index of the original transparent glaze. Anortite stands out among reinforcing phases that produces dull surfaces associated with high roughness. On the other hand, zircon stands out among the phases that improve gloss surface together wear resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-60

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.W. McMillan, Glass-ceramics, Academic Press, London, (1964).

Google Scholar

[2] S. D. Stokey, US Patent 2, 920, 971 (1960).

Google Scholar

[3] A. Matecki, A. M. Lejus, B. Viana, D. Vivien and R. Collongues, Devitrification of Nd 3+-doped glasses in the akermanite-gehlenite system, Journal of Thermal Analysis, 44, 461-472, (1995).

DOI: 10.1007/bf02636136

Google Scholar

[4] J.M. Fernández Navarro, El Vidrio, CSIC, 2a. ed., Madrid, (1991).

Google Scholar

[5] W.D. Kingery, H.K. Bower, D.R. Uhlmann, Introduction to Ceramics, 2n. ed., New York, John Wiley and Sons, (1976).

Google Scholar

[6] A. R. Boccaccini, The Relationship between Wear Behaviour and Brittleness Index in Engineering Ceramics and Dispersion-Reinforced Ceramic Composites, Interceram 48, 176-187, (1999).

Google Scholar

[7] H Yanagida, M. Takata, M. Nagay, Fabrication of Translucent ZrO2 Film by a Modified Doctor Blade Method, J. of Amer. Ceram. Soc., 64, 2, 34-35, (2006).

DOI: 10.1111/j.1151-2916.1981.tb09571.x

Google Scholar

[8] Lawn, B. R., E. R. Fuller, Equilibrium Penny-Like Cracks in indentation fracture. J. Mat Sci 10, 2016-21, (1975).

DOI: 10.1007/bf00557479

Google Scholar

[9] J. Roesler, H. Harders, M. Baeker, Mechanical Behavior of Engineering Materials, Springer, Amsterdam, (2007).

Google Scholar

[10] E. Breval, G.C. Dodds, N.H. Mcmillan, The Hardness, Stiffness and Thoughness of Diphasic Abrasive Materials prepared by Sol-Gel Techniques, Mat. Res. Bull, 20, 413-429, (1985).

DOI: 10.1016/0025-5408(85)90009-1

Google Scholar

[11] S. Sorlí, M.A. Tena, A. Mestre, M. Llusar, G. Monrós. Efecto de la fase principal desvitrificada sobre la microestructura y las propiedades mecánicas de vidriados cerámicos", Actas Qualicer 2004, Castellón, Marzo (2004).

DOI: 10.3989/revmetalm.1998.v34.iextra.740

Google Scholar

[12] W. Semm, S. Fretti, Abrasive Wear of multiphase materials, Castolin SA, Wear, 129, 234-243, 1988. Acknowledgements: authors acknowledge financial support of DGI-MEC MAT2005-0057 Spanish project and P1-1B2005-06 project of Fundación Caja Castellón-Universitat Jaume I.

Google Scholar