Investigation into the Grindability and Surface Integrity of the Nickel Base Superalloy Using Liquid Nitrogen Jet Grinding

Abstract:

Article Preview

Grinding processes are mainly technique employed widely as a finishing process in a variety of materials, such as metals, hardness and brittleness and ductile materials machining to achieve good dimensional and form accuracy of the product with acceptable surface integrity. However, grinding is associated with high specific energy requirements which may be an order higher than that required in other conventional machining processes such as turning, planning, milling etc. Therefore, in grinding process, high grinding zone temperature may lead to thermal damage to the work surface, induces micro-cracks and tensile residual stresses at the ground surfaces, which deteriorate surface quality and integrality of the ground surface. Therefore, grinding fluids are applied in different forms to control such high temperature, but they are ineffective, especially under high speed grinding conditions where the energy of the fluid is not sufficient to penetrate the boundary layer of air surrounding the wheel. Moreover, the conventional flood supply system demands more resources for operation, maintenance, and disposal, and results in higher environmental and health problems. Therefore, there are critical needs to reduce the use of cutting fluid in grinding process, and cryogenic cooling grinding is a promising solution. The work presented in this paper aims at evaluating the grind ability and surface integrity of the nickel base super alloy resulting from the application of cryogenic cooling.

Info:

Periodical:

Key Engineering Materials (Volumes 426-427)

Edited by:

Dunwen Zuo, Hun Guo, Guoxing Tang, Weidong Jin, Chunjie Liu and Chun Su

Pages:

49-54

DOI:

10.4028/www.scientific.net/KEM.426-427.49

Citation:

C. H. Li et al., "Investigation into the Grindability and Surface Integrity of the Nickel Base Superalloy Using Liquid Nitrogen Jet Grinding", Key Engineering Materials, Vols. 426-427, pp. 49-54, 2010

Online since:

January 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.