Crystallization of Calcium Carbonate Vaterite Involves with another Mechanism Associated with Liquid Crystal in Embryonic Yolk Sacs

Article Preview

Abstract:

Calcium carbonate is often used as an efficient antacid that absorbs and neutralizes stomach acid while providing calcium for healthy bones. Taking advantage of the lack of adverse side effects of calcium, new drug delivery systems consisting of drug-supported spherical microparticles are being developed. We have reported in our previous studies that a natural process producing calcium carbonate microparticles can be found during avian development. These natural systems provide inspiration for designing more efficient microparticle facilitated drug-delivery systems. In this study, the formation and re-absorption of calcium carbonate crystals were tracked during Gallina N. meleagris embryogenesis and early postnatal development. The study demonstrated that the formation of calcium carbonate microparticles, as calcium is transferred from the eggshell into the egg sac, is a process of calcium preservation. X-ray diffraction showed that calcium carbonate crystal is mainly preserved in the vaterite isoform. Calcium incorporated into the yolk sac during this process can be easily assimilated as necessary during postnatal development. Eons of evolution have yielded a calcium preservation process that produces an iso-form of crystalline calcium most readily absorbed by the organism. Our previous results indicate that this biological system is likely a lyotropic process, the method that is currently being used for the production of microparticle drug delivery systems. In this work, our data suggests that calcium carbonate crystal can also initiate its crystallization from the center of liquid crystal, recognizable by a chimeric thermal phase transition. Our work provides valuable information for designing more efficient microparticle for drug-delivery.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 428-429)

Pages:

349-355

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Addadi, D. Joester, F. Nudelman and S. Weiner: Chem. Eur. J. Vol. 12 (2006), p.980.

Google Scholar

[2] E. Beniash, J. Aizenberg, L. Addadi and S. Weiner: Proc. R. Soc. London Ser. B, Vol. 264(1997), p.461.

Google Scholar

[3] M. E. Davis: How Life Makes Hard Stuff, Science, Vol. 305 (2004), p.480.

DOI: 10.1126/science.1099773

Google Scholar

[4] G. Fehér: Anat. Histol. Embryol. Vol. 8(1979), p.360.

Google Scholar

[5] H. He, H. Zhou, G. Wang and X. Wu: J. Wuhan Univ. Nature Science Ed. Vol. 4(1978), p.32.

Google Scholar

[3] T. Ikoma, T. Tonegawa, H. Watanaba, G. Chen, J. Tanaka and Y. Mizushima: J. Nanosci Nanotechnol, Vol. 7(2007), p.822.

DOI: 10.1166/jnn.2007.523

Google Scholar

[7] X. N. Jiang, J. Z. Li and X. H. Xu: Acta Hydrobiologica Sinica, Vol. 25(2001), p.123.

Google Scholar

[8] J. R. Lee, T. Y. Han, T. M. Willey and D. Wang et al: J. Am. Chem. Soc. Vol. 129(2007), p.10370.

Google Scholar

[9] M. Li and L. Chao: Acta Biophysica Sinica, Vol. 2(1982), p.381.

Google Scholar

[10] H. A. Lowenstam and S. Weiner: On Biomineralization (Oxford Univ. Press, New York, 1989).

Google Scholar

[11] B. P. Pichon, P. H. Bomans, P. M. Frederik and N. A. Sommerdijk: J. Am. Chem. Soc. Vol. 130(2008), p.4034.

Google Scholar

[12] Y. Politi, T. Arad, E. Klein, S. Weiner and L. Addadi: Science 306(2004), p.1161.

Google Scholar

[13] E. M. Pouget, P. H. Bomans, J. A. Goos and P. M. Frederik et al: Science 323(2009), p.1455.

Google Scholar

[14] Y. Ueno, H. Futagawa, Y. Takagi, A. Ueno and Y. Mizushima: J. Control Release. Vol. 103(2005), p.93.

Google Scholar

[15] X. H. Xu, C Tang, Z Tang: Acta Biophysica Sinica. Vol. 9(1993), p.41.

Google Scholar

[16] X. H. Xu, C. Wang, X. Wu and H. He: Mol. Cryst. Liq. Cryst. Vol. 265(1995), p.659.

Google Scholar

[17] X. H. Xu, M. M. Xu, G. Cao, O. Jones, C. Zhao, L. Cao et al: Mol. Cryst. Liq. Cryst. Vol. 508(2009), P. 77.

Google Scholar

[18] X. H. Xu, M. Baht, M. Nishi, H. Takeshima and J. Ma: Biophysics J. Vol. 78(2000), p.1270.

Google Scholar

[19] X. H. Xu, C. Dong and B.E. Vogel: J. Histochem. Cytochem. Vol. 55(2007), p.119.

Google Scholar

[20] J. R. Young, J. M. Didimus, P. R. Bown, B. Prins and S. Mann: Nature 356(1992), p.516.

Google Scholar

[21] Q. Zhao, Z. Mao, C. Gao and J. Shen: J Biomater Sci Polym Ed. Vol. 17(2006), p.997.

Google Scholar