Investigation on Two-Dimensional Photonic Crystal Self-Collimation Splitting Sensor

Article Preview

Abstract:

A self-collimation splitting sensor truncated in a two-dimensional (2D) photonic crystal has been proposed and demonstrated theoretically. Intensity of transmitted light and reflected light, which varies with the width of the splitter, is detected at two output ports. Calculation results validated by the 2D finite-difference time-domain technique show that with the increase of width, the transmittivity decreases while the reflectivity increases and their summation decreases. Considering the trade-off between the sensitivity of the optical detector and the loss of power, including the difficulty of fabrication, the width of 0.4a is meet for the sensor. The simulated relative intensity monotonously increases from 1.63 to 2.94 nonlinearly.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 428-429)

Pages:

367-371

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Dakin and B. Culshaw: Optical fiber sensors: Principles and components, Artech House, Boston, MA (1988).

Google Scholar

[2] M. G. Xu, L. Reekie, Y. T. Chow et al.: Electronics Lett. Vol. 29 (1993), p.398.

Google Scholar

[3] E. Bucklep, R. J. Davies, T. Kinning et al.: Biosensors & bioelectronics Vol. 8 (1993), p.355.

Google Scholar

[4] A. D. Kersey, T. A. Berkoff and W. W. Morey: Electronics Lett. Vol. 28 (1992), p.236.

Google Scholar

[5] S. J. Spammer, P. L. Swart and A. Booysen: Appl. Opt. Vol. 35 (1996), p.4522.

Google Scholar

[6] B. Drapp, J. Piehler, A. Brecht, et al.: Sensors and Actuators B: Chemical Vol. 39 (1997), p.277.

Google Scholar

[7] R. G. Heideman and P. V. Lambeck: Sensors and Actuators B: Chemical Vol. 61 (1999), p.100.

Google Scholar

[8] S. John: Phys. Rev. Lett. Vol. 58 (1987), p.2486.

Google Scholar

[9] E. Yablonovitch: Phys. Rev. Lett. Vol. 58 (1987), p. (2059).

Google Scholar

[10] J. Knight, T. Birks, P. Russell and D. Atkin: Opt. Lett. Vol. 21 (1996), p.1547.

Google Scholar

[11] M. Lonar, D. Nedeljkovi, T. Doll, J. Vukovi, A. Scherer and T. P. Pearsall: Appl. Phys. Lett. Vol. 77 (2000), p. (1937).

Google Scholar

[12] B. D'Urso, O. Painter, J. O'Brien, T. Tombrello, A. Yariv and A. Scherer: J. Opt. Soc. Amer. B Vol. 15 (1998), p.1155.

Google Scholar

[13] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami: Appl. Phys. Lett. Vol. 74 (1999), p.1212.

DOI: 10.1063/1.123502

Google Scholar

[14] J. Witzens, M. Loncar and A. Scherer: IEEE J. Sel. Top. Quantum Electron. Vol. 8 (2002), p.1246.

Google Scholar

[15] X. Yu and S. Fan: Appl. Phys. Lett. Vol. 83 (2003), p.3251.

Google Scholar

[16] S. Shi, A. Sharkawy, C. Chen, D. M. Pustai and D. W. Prather: Opt. Lett. Vol. 29 (2004), p.617.

Google Scholar

[17] S. G. Lee, S. S. Oh, J. E. Kim, H. Y. Park and C. S. Kee: Appl. Phys. Lett. Vol. 87 (2005), p.1811061.

Google Scholar