Photonic Crystal Fabry-Perot Self-Collimation Interferometer by Liquid Crystal Infiltration

Article Preview

Abstract:

A Fabry-Perot self-collimation interferometer (FPSI) constructed in a two-dimensional photonic crystal (2D PhC) by liquid crystal infiltration has been proposed and demonstrated theoretically. The resonant cavity of FPSI is infiltrated with a nematic liquid crystal (LC) 5CB with ordinary and extraordinary refractive indices 1.522 and 1.706, respectively. The transmission spectrum of the FPSI has been investigated with the 2D finite-difference time-domain method. Calculation results show that resonant transmission peaks have nearly equal frequency spacing 0.0090c/a. When the effective refractive index neff of the liquid crystal is increased from 1.522 to 1.706, the peaks shift to the lower frequencies over 0.0071c/a while the peak spacing is almost kept unchanged. Thus this FPSI by LC infiltration can work as a tunable attenuator or an optical switch. For the central operating wavelength around 1.55m, its dimensions are only about tens of microns. Thus this device may be applied to photonic integrated circuits.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 428-429)

Pages:

573-578

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. John: Phys. Rev. Lett. Vol. 58 (1987), p.2486.

Google Scholar

[2] E. Yablonovitch: Phys. Rev. Lett. Vol. 58 (1987), p. (2059).

Google Scholar

[3] J. Knight, T. Birks, P. Russell and D. Atkin: Opt. Lett. Vol. 21 (1996), p.1547.

Google Scholar

[4] M. Lonar, D. Nedeljkovi, T. Doll, J. Vukovi, A. Scherer and T. P. Pearsall: Appl. Phys. Lett. Vol. 77 (2000), p. (1937).

Google Scholar

[5] B. D'Urso, O. Painter, J. O'Brien, T. Tombrello, A. Yariv and A. Scherer: J. Opt. Soc. Amer. B Vol. 15 (1998), p.1155.

Google Scholar

[6] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami: Appl. Phys. Lett. Vol. 74 (1999), p.1212.

DOI: 10.1063/1.123502

Google Scholar

[7] J. Witzens, M. Loncar and A. Scherer: IEEE J. Sel. Top. Quantum Electron. Vol. 8 (2002), p.1246.

Google Scholar

[8] X. Yu and S. Fan: Appl. Phys. Lett. Vol. 83 (2003), p.3251.

Google Scholar

[9] S. Shi, A. Sharkawy, C. Chen, D. M. Pustai and D. W. Prather: Opt. Lett. Vol. 29 (2004), p.617.

Google Scholar

[10] R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdr'e, M. Mulot and S. Anand: Opt. Lett. Vol. 31 (2006), p.1238.

DOI: 10.1364/ol.31.001238

Google Scholar

[11] S. Furumi, S. Yokoyama, A. Otomo and S. Mashiko: Thin Solid Films Vol. 499 (2006), p.322.

DOI: 10.1016/j.tsf.2005.06.075

Google Scholar