Microstructure and Mechanical Properties of Hot Pressed ZrC-SiC-ZrB2 Composites

Article Preview

Abstract:

Ternary ZrC-SiC-ZrB2 ceramic composites were prepared by hot pressing at 1900 °C for 60 min under a pressure of 30 MPa in argon. The influence of ZrB2 content on the microstructure and mechanical properties of ZrC-SiC-ZrB2 composites was investigated. Examination of SEM showed that the microstructure of the composites consisted of the equiaxed ZrB2, ZrC and SiC grains, and there was a slight tendency of reduction for grain size in ZrC with increasing ZrB2 content. The hardness increased considerably from 23.3 GPa for the ZS material to 26.4 GPa for the ZS20B material. Flexural strength was a strong function of ZrB2 content, increasing from 407 MPa without ZrB2 addition to 627 MPa when the ZrB2 content was 20vol.%. However, the addition of ZrB2 has little influence on the fracture toughness, ranging between 5.5 and 5.7 MPam1/2.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 434-435)

Pages:

173-177

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. Zimmermann, G.E. Hilmas, W.G. Fahrenholtz, et al.: J. Eur. Ceram. Soc. Vol. 27 (2007), p.2729.

Google Scholar

[2] S.Q. Guo, Y. Kagawa, T. Nishimurac, et al.: Scripta Mater. Vol. 58 (2008), p.579.

Google Scholar

[3] X.B. Zhang, N. Liu and C. Rong: Int. J. Refract. Met. H. Vol. 26 (2008), p.346.

Google Scholar

[4] T. Tsuchida and S. Yamamoto: Solid. State. Ionics. Vol. 172 (2004), p.215.

Google Scholar

[5] M.M. Opeka, I.G. Talmy, E.J. Wuchina, et al.: J. Eur. Ceram. Soc. Vol. 19 (1999), p.2405.

Google Scholar

[6] F. Monteverde, S. Guicciardi and A. Bellosi: Mater. Sci. Eng. A. Vol. 346 (2003), p.310.

Google Scholar

[7] S.M. Zhu, W.G. Fahrenholtz and G.E. Hilmas: J. Eur. Ceram. Soc. Vol. 27 (2007), p. (2077).

Google Scholar

[8] A.L. Chamberlain, W.G. Fahrenholtz and G.E. Hilmas: J. Am. Ceram. Soc. Vol. 87.

Google Scholar

[6] (2004), p.1170.

Google Scholar

[9] S.S. Hwang, A.L. Vasiliev and N.P. Padture: Mater. Sci. Eng. A. Vol. 464 (2007), p.216.

Google Scholar

[10] S.Q. Guo, Y. Kagawa, T. Nishimura, et al.: Ceram. Int. Vol. 34 (2008), p.1811.

Google Scholar

[11] S.Q. Guo, Y. Kagawa, T. Nishimura, et al.: J. Eur. Ceram. Soc. Vol. 28 (2008), p.1279.

Google Scholar

[12] J. Bull, M.J. White, and L. Kaufman: US Patent 5750450 (1998).

Google Scholar

[13] E. Min-Haga and W.D. Scott: J. Mater. Sci. Vol. 23 (1988), p.2865.

Google Scholar

[14] W.W. Wu, G.J. Zhang, Y.M. Kan, et al.: J. Am. Ceram. Soc. Vol. 91.

Google Scholar

[8] (2008), p.2501.

Google Scholar

[15] W.W. Wu, G.J. Zhang, Y.M. Kan, et al.: J. Am. Ceram. Soc. Vol. 89.

Google Scholar

[9] (2006), p.2967.

Google Scholar

[16] Q. Qu, J.C. Han, W.B. Han, et al.: Mater. Chem. and Phys. Vol. 110 (2008), p.216.

Google Scholar

[17] R. Licheri, R. Orrù , C, Musa, et al.: Mater. Lett. Vol. 62 (2008), p.432.

Google Scholar

[18] A. Rezaie, W.G. Fahrenholtz and G.E. Hilmas: J. Eur. Ceram. Soc. Vol. 27 (2007), p.2495.

Google Scholar

[19] G. Anne, S. Put , K. Vanmeensel, et al.: J. Eur. Ceram. Soc. Vol. 25 (2005), p.55.

Google Scholar

[20] R.W. Armstrong: Metall. Trans. Vol. 65 (1970), p.1169.

Google Scholar

[21] D. Sciti, S. Guicciardia and M. Nygren: Scripta. Mater. Vol. 59 (2008), p.638.

Google Scholar

[22] L. Silvestroni and D. Sciti: Scripta Mater. Vol. 57 (2007), p.165.

Google Scholar

[23] F. Monteverde and A. Bellosi: Solid. State. Sci. Vol. 7 (2005), p.622.

Google Scholar

[24] F. Monteverde, A. Bellosi and S. Guicciardi: J. Eur. Ceram. Soc. Vol. 22 (2002), p.279.

Google Scholar