Effect of Bi2O3 Addition on the Electrical and Physical Properties of Lead-Free 0.98(Na0.5K0.5)NbO3-0.02 Ba(Zr0.04Ti0.96)O3 Piezoelectric Ceramics

Article Preview

Abstract:

The 0.98(Na0.5K0.5)NbO3–0.02Ba(Zr0.04Ti0.96)O3 ceramics have been prepared following the conventional mixed oxide process. X-ray diffraction analysis revealed that, during sintering, all of the Ba(Zr0.04Ti0.96)O3 diffuses into the lattice of (Na0.5K0.5)NbO3 to form a solid solution, in which a orthorhombic phase with a perovskite structure was found In order to improve the sinterability of the ceramics, Bi2O3 additions were used as a sintering aid. The electromechanical coupling coefficients of the planar mode kp and the thickness mode kt reach 0.3 and 0.55, respectively, at the sintering of 1100oC for 5 h. For 0.98NKN-0.02BZT ceramics by doping 0.5 wt.% Bi2O3, the electromechanical coupling coefficients of the planar mode kp and the thickness mode kt reach 0.21 and 0.57, respectively. The ratio of thickness coupling coefficient to planar coupling coefficient is 2.7.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 434-435)

Pages:

413-416

Citation:

Online since:

March 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. D. Maeder, D. Damjanovic and N. Setter: J. Electroceram Vol. 13 (2004), p.385.

Google Scholar

[2] Y. Guo, K. Kakimoto, and H. Ohsato: Solid State Commun., Vol. 129 (2004), p.279.

Google Scholar

[3] S. Y. Chu, W. Water, Y.D. Juang, J. T. Liaw, and S. B. Dai: Ferroelectrics, Vol. 297 (2003), p.11.

Google Scholar

[4] M. Matsubara, T. Yamaguchi, K. Kikuta, and S. Hirano: Jpn. J. Appl. Phys. Vol. 44 (2005), p.6136.

Google Scholar

[5] S. H. Park, C. W. Ahn, S. Nahm, and J. S. Song: Jpn. J. Appl. Phys. Vol. 43 (2004), p. L1072.

Google Scholar

[6] Y. Guo, K. Kakimoto, and H. Ohsato: Jpn. J. Appl. Phys. Vol. 43 (2004), p.6662.

Google Scholar

[7] Y. Guo, K. Kakimoto, and H. Ohsato: Appl. Phys. Lett. Vol. 85 (2004), p.4121.

Google Scholar

[8] Y. Guo, K. Kakimoto, H. Ohsato: Mater. Lett. Vol. 59 (2005), p.241.

Google Scholar

[9] M. Kosec, V. Bobnar, M. Hrovat, et al.: J. Mater. Res. Vol. 19 (2004), p.1849.

Google Scholar

[10] Y. Guo, K. Kakimoto, H. Ohsato: Solid State Commun. Vol. 129 (2004), p.279.

Google Scholar

[11] R. C. Chang, S. Y. Chu, Y. F. Lin, et al.: J. Eur. Cerm. Soc. Vol. 27 (2007), p.4453.

Google Scholar

[12] R. C. Chang, S. Y. Chu, Y. F. Lin, et al.: Sensors and Actuators A Vol. 138 (2007), p.355.

Google Scholar

[13] Jaffe, W.R. Cook and H. Jaffe: Piezoelectric Ceramics, (1971), p.154.

Google Scholar

[14] C.H. Wang: Jap. J. Appl. Phys. Vol. 41.

Google Scholar

[8] (2002), p.5317.

Google Scholar

[15] C.H. Wang: J. Ceram. Soc, Japan Vol. 116.

Google Scholar

[8] (2008), p.632.

Google Scholar

[16] Anon.: Proc. IRE., Vol. 49 (1961), p.1161.

Google Scholar

[17] T. Senda, and R. C. Bradt: J. Am. Ceram. Soc. Vol. 73.

Google Scholar

[1] (1990), p.106.

Google Scholar