Programmable Holographic Optical Elements as Adaptive Optics in Optical Diagnostics Devices

Abstract:

Article Preview

This paper reports a combined, Hartmann/Digital Holographic interferometry inspection system for inspecting optical components that do not easily lend themselves to conventional interferometric or Hartmann inspection. A programmable holographic optical element (HOE) preconditions wavefronts to extend the dynamic range of interferometry measurements and also transforms the same system into a scanning Hartmann operation, which has lower resolution but higher dynamic range. Inspecting aspherical surfaces with existing interferometers requires special, computer generated holographic optical elements to transform the wavefront to within the dynamic range of the interferometer. The Hartmann measurement provides the information required to precondition a reference wave that avails the measurement process to the more precise phase shifting interferometry. The SLM offers yet other benefits including a method for minimizing the effects of speckle on the measurement. The paper provides example measurements, discusses the limitations, and suggests other potential applications.

Info:

Periodical:

Edited by:

Yuri Chugui, Yongsheng Gao, Kuang-Chao Fan, Roald Taymanov and Ksenia Sapozhnikova

Pages:

108-112

DOI:

10.4028/www.scientific.net/KEM.437.108

Citation:

J. D. Trolinger et al., "Programmable Holographic Optical Elements as Adaptive Optics in Optical Diagnostics Devices", Key Engineering Materials, Vol. 437, pp. 108-112, 2010

Online since:

May 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.