[1]
L. Telesca, et al., Multiresolution wavelet analysis of earthquakes,. Chaos, Solitons & Fractals, Vol. 22, No. 3, PP. 741-748, (2004).
DOI: 10.1016/j.chaos.2004.02.021
Google Scholar
[2]
G. Iovane, P. Giordano. Wavelet and multiresolution analysis: Nature of ε ∞ Cantorian space-time. Chaos, Solitons & Frac-tals, Vol. 32, No. 4, PP. 896-910, (2007).
DOI: 10.1016/j.chaos.2005.11.097
Google Scholar
[3]
N. Zhang, X. Wu X. Lossless Compression of Color Mosaic Images,. IEEE Trans Image processing Vol. 15, No. 16, PP. 1379-1388, (2006).
DOI: 10.1109/tip.2005.871116
Google Scholar
[4]
Q. Chen, etal, A study on compactly supported orthogo-nal vector-valued wavelets and wavelet packets,. Chaos, Soli-tons & Fractals. Vol. 31, No. 4, PP. 1024-1034, (2007).
DOI: 10.1016/j.chaos.2006.03.097
Google Scholar
[5]
Z. Shen, Nontensor product wavelet packets in 2() s LR , , SIAM Math. Anal., Vol. 26, No. 4, PP. 1061-1074, (1995).
DOI: 10.1137/s0036141093243642
Google Scholar
[6]
Q. Chen, Z. Cheng, X. Feng, ``Multivariate Biorthogonal Multiwavelet packets, MATHEMATICA APPLICATA, in Chinese, 2005, 18(3), pp.358-364.
Google Scholar
[7]
S. Yang, A-scale multiple orthogonal wavelet packets,. MATHEMMATICA APPLICATA, in Chinese, Vol. 13, No. 1, PP. 61-65, (2000).
Google Scholar
[8]
C. K. Chui, An Introduction to Wavelets, Academic: New York, (1992).
Google Scholar
[9]
L. Telesca, et al., Multiresolution wavelet analysis of earthquakes,. Chaos, Solitons & Fractals, Vol. 22, No. 3, PP. 741-748, (2004).
DOI: 10.1016/j.chaos.2004.02.021
Google Scholar