[1]
G. B. Alvarenga, G. R. Mateus, G. de Tomi: A genetic and set partitioning two-phase approach for the vehicle routing problem with time windows, Computers & Operations Research, Vol. 34 (2007), pp.1561-1584.
DOI: 10.1016/j.cor.2005.07.025
Google Scholar
[2]
Y. Rochat, E D. Taillard: Probabilistic diversification and intensification in local search for vehicle routing, Journal of Heuristics, Vol. 1 (1995), pp.147-167.
DOI: 10.1007/bf02430370
Google Scholar
[3]
J. Homberger, H. Gehring: Two evolutionary metaheuristics for the vehicle routing problem with time windows, INFOR, Vol. 37(1999), pp.297-318.
DOI: 10.1080/03155986.1999.11732386
Google Scholar
[4]
Information on http: /www. top. sintef. no/ publications. html.
Google Scholar
[5]
L. S. Ochi, D. S. Vianna, L. M. A. Drummond, A .O. Victor: A parallel evolutionary algorithm for the vehicle routing problem with heterogeneous fleet, Future Generation Computer System, Vol. 14 (1998), pp.285-292.
DOI: 10.1016/s0167-739x(98)00034-x
Google Scholar
[6]
C. Prins: A simple and effective evolutionary algorithm for the vehicle routing problem, Computers and Operations Research, Vol. 31(2004), p.1985-(2002).
DOI: 10.1016/s0305-0548(03)00158-8
Google Scholar
[7]
M. M. Solomon: Algorithms for the vehicle routing and scheduling problems with time window constraints, Operations Research, Vol. 35(1987), pp.254-265.
DOI: 10.1287/opre.35.2.254
Google Scholar
[8]
S.G. Liu, W.L. Huang, H.M. Ma: An effective genetic algorithm for the fleet size and mix vehicle routing problems, Transportation Research Part E, Vol. 45 (2009), pp.434-445.
DOI: 10.1016/j.tre.2008.10.003
Google Scholar
[9]
K. Sorensen, M. Sevaux: MA|PM: memetic algorithms with population management, Computers and Operations Research, Vol. 33(2006), pp.1214-1225.
DOI: 10.1016/j.cor.2004.09.011
Google Scholar