Rapid Low-Temperature Synthesis of Porous ZnO Nanoparticle Film by Self-Hydrolysis Technique

Article Preview

Abstract:

Porous nano-scale ZnO particle film was rapidly synthesized from a mixing solution of zinc acetate dihydrate – acetone at about 90 °C. The crystal structure and morphology were clarified by the X-ray diffraction and a field emission scanning electron microscope. The evaporation of higher vapor pressure acetone resulted in the hydrolysis of zinc salt in itself crystalline water. Three morphologies of ZnO (dispersed nanoparticles, dispersed bread chip-shaped particles and flower-like bread chip-shaped assemblies) were observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-126

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Hingorani, V. Pillai, P. Kumar, M.S. Multani and D.O. Shah: Mater. Res. Bull. Vol. 28/12 (1993), p.1303.

Google Scholar

[2] S. Sakohara, M. Ishida and M.A. Anderson: J. Phys. Chem. B Vol. 102/50 (1998), p.10169.

Google Scholar

[3] C.H. Hung and W.T. Whang: Mater. Chem. Phys. Vol. 82/3 (2003), p.705.

Google Scholar

[4] M. Ohyama, H. Kozuka and T. Yoko: Thin Solid Films Vol. 306/1 (1997), p.78.

Google Scholar

[5] K. Yu, z. Jin, X. Liu, J. Zhao and J. Feng: Appl. Surf. Sci. Vol. 253 (2006), p.4072.

Google Scholar

[6] A. Dev, S.K. Panda, S. Kar, S. Chakrabarti and S. Chaudhuri: J. Phys. Chem. B Vol. 110/29 (2006), p.14266.

Google Scholar

[7] C. Pacholski, A. Kornowski and H. Weller: Angew. Chemie-Int. Edit. Vol. 41/7 (2002), p.1188.

Google Scholar

[8] M. Law, L.E. Greene, J.C. Johnson, R. Saykally and P.D. Yang: Nat. Mater. Vol. 4/6 (2005), p.455.

Google Scholar

[9] L.E. Greene, B.D. Yuhas, M. Law, D. Zitoun and P.D. Yang: Inorg. Chem. Vol. 45/19 (2006), p.7535.

Google Scholar

[10] L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai and P.D. Yang: Nano Lett. Vol. 5/7 (2005), p.1231.

Google Scholar

[11] Y. Gao, M. Nagai, T. -C. Chang and J. -J. Shyue: Cryst. Growth Des. Vol. 7/12 (2007), p.2467.

Google Scholar

[12] Y.F. Gao and M. Nagai: Langmuir Vol. 22/8 (2006), p.3936.

Google Scholar

[13] J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan and L. Vayssieres: Nanotechnology Vol. 17/19 (2006), p.4995.

Google Scholar

[14] R.B. Peterson, C.L. Fields and B.A. Gregg: Langmuir Vol. 20/12 (2004), p.5114.

Google Scholar

[15] R.B.M. Cross, M.M. De Souza and E.M.S. Narayanan: Nanotechnology Vol. 16/10 (2005), p.2188.

Google Scholar

[16] S.J. Henley, M.N.R. Ashfold, D.P. Nicholls, P. Wheatley and D. Cherns: Appl. Phys. A-Mater. Sci. Proc. Vol. 79/4-6 (2004), p.1169.

Google Scholar

[17] Y. Sun, N.G. Ndifor-Angwafor, D.J. Riley and M.N.R. Ashfold: Chem. Phys. Lett. Vol. 431/4-6 (2006), p.352.

Google Scholar

[18] X.L. Hu, Y. Masuda, T. Ohji and K. Kato: Thin Solid Films Vol. 518 (2009), p.638.

Google Scholar