Experimental Characterization of Behavior Laws for Titanium Alloys: Application to Ti5553

Abstract:

Article Preview

The aim of this paper is to study the machinability of a new titanium alloy: Ti-5AL-5Mo-5V-3CR used for the production of new landing gear. First, the physical and mechanical properties of this material will be presented. Second, we show the relationship between material properties and machinability. Third, the Ti5553 will be compared to Ti64. Unless Ti64 is α+β alloy group and Ti5553 is a metastable, we have chosen to compare these two materials. Ti64 is the most popular of titanium alloys and many works were been made on its machining. After, we have cited the Ti5553 properties and detailed the behavior laws. They are used in different ways: with or without thermal softening effect or without dynamic terms. The goal of the paper is to define the best cutting force model. So, different models are compared for two materials (steel and titanium alloy). To define the model, two methods exist that we have compared. The first is based on machining test; however the second is based on Hopkinson bar test. These methods allow us to obtain different ranges of strain rate, strain and temperature. This comparison will show the importance of a good range of strain rate, strain and temperature for behavior law, especially in titanium machining.

Info:

Periodical:

Edited by:

Moussa Karama

Pages:

147-155

DOI:

10.4028/www.scientific.net/KEM.446.147

Citation:

V. Wagner et al., "Experimental Characterization of Behavior Laws for Titanium Alloys: Application to Ti5553", Key Engineering Materials, Vol. 446, pp. 147-155, 2010

Online since:

July 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.