Effect of Ductile Damage Evolution in Sheet Metal Forming: Experimental and Numerical Investigations

Article Preview

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as necking, fracture, springback, buckling and wrinkling. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. In the first part of this work, we focus on the traditional identification of the constitutive law using oriented tensile tests (0°, 45°, and 90° with respect to the rolling direction). A Digital Image Correlation (DIC) method is used in order to measure the displacements on the surface of the specimen and to analyze the necking evolution and the instability along the shear band. Therefore, bulge tests involving a number of die shapes (circular and elliptic) were developed. In a second step, a mixed numerical–experimental method is used for the identification of the plastic behavior of the stainless steel metal sheet. The initial parameters of the inverse identification were extracted from a uniaxial tensile test. The optimization procedure uses a combination of a Monte-Carlo and a Levenberg-Marquardt algorithm. In the second part of this work, according to some results obtained by SEM (Scaning Electron Microscopy) of the crack zones on the tensile specimens, a Gurson Tvergaard Needleman (GTN) ductile model of damage has been selected for the numerical simulations. This model was introduced in order to give informations concerning crack initiations during hydroforming. At the end of the paper, experimental and numerical comparisons of sheet metal forming applications are presented and validate the proposed approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-169

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Andrade-Campos, S. Thuillier, P. Pilvin and F. Teixeira-Dias, On the determination of material parameters for internal variable thermoelastic-viscoplastic constitutive models, International Journal of Plasticity, vol. 23 (2007) 1349-1379.

DOI: 10.1016/j.ijplas.2006.09.002

Google Scholar

[2] J. L Chaboche.,. Continuous Damage Mechanics: a tool to describe phenomena before crack initiation. Nuclear Engineering and Design 64, (1981) 233-247.

DOI: 10.1016/0029-5493(81)90007-8

Google Scholar

[3] M. Brünig, Ricci S., Nonlocal continuum theory of anisotropically damaged metals. International Journal of Plasticity 21, (2005)1346-1382.

DOI: 10.1016/j.ijplas.2004.06.006

Google Scholar

[4] G. Rousselier, S. A. Leclercq, simplified polycrystalline model for viscoplastic and damage finite element analyses. International Journal of Plasticity vol. 22, (2006) 685-712.

DOI: 10.1016/j.ijplas.2005.04.011

Google Scholar

[5] C. Zhiying, D. Xianghuai, The GTN damage model based on Hill'48 anisotropic yield criterion and its application in sheet metal forming, Computational Materials Science 44 (2009) 1013- 1021.

DOI: 10.1016/j.commatsci.2008.07.020

Google Scholar

[6] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth. I. Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol. Vol. 99 (1977) 2-15.

DOI: 10.2172/7351470

Google Scholar

[7] V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metall. 32 (1) (1984) 157-169.

DOI: 10.1016/0001-6160(84)90213-x

Google Scholar

[8] D. Celentano, E Cabezas., C. Garcia and A. Monsalve, Characterization of the mechanical behaviour of materials in the tensile test: experiments and simulation. Modeling Simulation, Mater. Sci. Eng. Vol. 12 (2004) 425-444. Fracture zone.

DOI: 10.1088/0965-0393/12/4/s09

Google Scholar

[9] J.F. Michel, P. Picart, Size effects on the constitutive behaviour for brass in sheet metal forming, Journal of Materials Processing Technology 141 (2003) 439-446.

DOI: 10.1016/s0924-0136(03)00570-3

Google Scholar

[10] P. Rui R. Cardoso, One Point quadrature shell elements for sheet metal forming analysis, Arch. Comput. Meth. Engng. Vol 12, (2005) 3-66.

Google Scholar

[11] J.P. Kleinermann, J.P. Ponthot, Parameter identification and shape/process optimization in metal forming simulation, Journal of Materials Processing Technology 139 (2003) 521-526.

DOI: 10.1016/s0924-0136(03)00530-2

Google Scholar

[12] F. Abbassi, O. Pantalé, O. Dalverny, A. Zghal, and R. Rakotomalala Parametric sheet metal characterization by using Monte-Carlo and Levenberg-Marquardt: bulge test application" APCOM, 07 in conjunction with EPMESC XI, December 3-6, , Kyoto, JAPAN (2007).

Google Scholar

[13] F. ABBASSI, Fédération des connaissances de mise en forme dans une plateforme de prototypage virtuel. Thèse de Doctorat, Institut National Polytechnique de Toulouse, 12 Novembre (2008).

Google Scholar

[14] N. Benseddiq, A . Imad, A ductile fracture analysis using a local damage model, International Journal of Pressure Vessels and Piping vol 85, 219-227, (2008).

DOI: 10.1016/j.ijpvp.2007.09.003

Google Scholar

[15] G. Gutscher, H. C. Wu, G. Ngaile and T. Altan, Determination of flow stress for sheet metal forming using the viscous pressure bulge (VPB) test, Journal of Materials Processing Technology, Volume 146, Issue 1, (2004) 1-7.

DOI: 10.1016/s0924-0136(03)00838-0

Google Scholar

[16] D. François., Techniques de l'Ingénieur - Essais mécaniques des métaux. Essais d'aptitude à la mise en forme,. M 125 07- (1984).

DOI: 10.51257/a-v1-m4162

Google Scholar