Influence of Process and Material Parameters on Impact Response in Composite Structure: Methodology Using Design of Experiments

Article Preview

Abstract:

Even if the mechanical performances of composite materials give new perspectives for the aircraft and space design, the variability of their behavior, linked to the presence of initial microscopic defects or led in service, constitute however a still important brake in their development. As regards particularly the response to fatigue loads or ageing, the behavior of these materials is affected by several sources of uncertainties, notably on the nature of the physical mechanisms of degradation, which are translated by a strong dispersion in life time. In aerospace industry, low energy impact phenomenon is not well known concerning composite materials and composite structures. Many manufacturers use important safety factors to design structures. The aim of this work is to define the most predominant parameters which permit a good response of damage using experiences plans. The differences of these parameters by using Resin Transfer Molding (RTM) or Liquid Resin Infusion (LRI) process than prepreg one is also studied in this work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-90

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.P. Kan, Final report DOT/FAA/AR-97/79 (1998).

Google Scholar

[2] E. Demuts, R. S. Sandhu, J.A. Daniels, report N° DOT/FAA/CT-92-25 (1992) 1097 - 1104.

Google Scholar

[3] S.A. Hitchen and R.M. Kemp, Comp. 26 (1994) 207-214.

Google Scholar

[4] GS. Hinrich, V. Chen, D. Jegley, L.C. Dickinson and K. Edward, NASA conference publication 3294 (1995).

Google Scholar

[5] E. Fuoss, P.V. Straznicky, C. Poon, Comp. Struc. 41 ( 1998 ) 67 -77.

Google Scholar

[6] D.R. Ambur and J.H. Starnes Jr, In structures, structural dynamics, and material conference (1998).

Google Scholar

[7] N.H. Tai, C.C.M. Ma, J.M. Lin and G.Y. Wu, Comp. Sci. and Tech. 59 (1999) 1753-1762.

Google Scholar

[4] GS. Hinrich, V. Chen, D. Jegley, L.C. Dickinson and K. Edward, NASA conference publication 3294 (1995).

Google Scholar

[8] D.D.R. Cartié, P.E. Irving, Comp. part A 33 (2002) 483 - 493.

Google Scholar

[9] T. Mitrevski, I.H. Marshal, R. Thomson, R. Jones and B. Whittingham, comp. struct. (2004).

Google Scholar

[10] G. Caprino, P. Iaccarino and A. Lamboglia, Composite structures 88 (2009) 360-366.

Google Scholar

[11] A. Duarte, I. Herszberg and R. Patton, Composite structures 47 (1999) 753-758.

Google Scholar

[12] J. Masters, Key Eng. Mater. 37 (1989) 317-348.

Google Scholar

[13] H. Kishi, M. Kuwata, S. Matsuda, T. Asami and A. Murakami, Composites Science and technology 64 (2004) 2517-2523.

DOI: 10.1016/j.compscitech.2004.05.006

Google Scholar

[14] Reifsnider, KL, Lesko J, Case S. IUTAM - Symposium on Mechanics of Composite Material (1983); 399-420.

Google Scholar

[15] Talreja R, Yalvac S, Yats LD, Wetters DG. Transverse cracking and stiffness reduction in cross-ply laminates of different matrix toughness. J of comp mat 1992; - 26(11): 1644-1663.

DOI: 10.1177/002199839202601105

Google Scholar

[16] Gathercole N, Reiter H, Adam T, Harris B. Life prediction for fatigue of T800/5245 carbonfibre composite : I. Constant-amplitude loading. Int J of Fatigue 1994; 16(8): 523-532.

DOI: 10.1016/0142-1123(94)90478-2

Google Scholar

[17] Mao H, Mahadevan S. Fatigue damage modelling of composite materials. Comp Struct 2002; 58: 405-410.

DOI: 10.1016/s0263-8223(02)00126-5

Google Scholar

[18] Dzenis YA. Cycle-based analysis of damage and failure in advanced composites under fatigue: 1. Experimental observation of damage development within loading cycles. Int J of Fatigue 2003; 25(6): 499-510.

DOI: 10.1016/s0142-1123(02)00170-6

Google Scholar

[19] Gros XE, Bousigue J, Takahashi K. NDT data fusion at pixel level. NDT & E Int 1999; 32(5): 283-292.

DOI: 10.1016/s0963-8695(98)00056-5

Google Scholar

[20] Vary A. Acousto-Ultrasonics, In: Nondestructive testing of fiber reinforced plastics. Composites 1990; 2: 1-54.

Google Scholar

[21] Lachaud F., thèse de doctorat, Université Paul Sabatier Toulouse (1997).

Google Scholar

[22] Smith T.R. and Owen M. J, proceedings of the sixth International reinforced plastics Congress (1968).

Google Scholar

[23] B. Harris, Fatigue in Composites (2003).

Google Scholar

[24] C. Bathias, Eng. Fract. Mech. 40 (1991) 757 -783.

Google Scholar

[25] M.H. Behesty and B. Harris, In : ICFC 1 (1997) 365-372.

Google Scholar

[26] L. Minnetyan, Computational simulation of composite structural fatigue, report NASA/CR_2005-213573 ( 2005).

Google Scholar

[27] T.P. Philippidis and V.A. Passipoularidis, Int. J. Fat. 29 (2007) 2104-2116.

Google Scholar

[28] N.L. Post, S.W. Case, J.J. Lesko, Int. J. Fatigue ( 2008 ) 2064 - (2086).

Google Scholar