Physicochemical and Electro-Rheological Characterization of Kaolinite / CMS / Silicone Oil Fluid

Article Preview

Abstract:

The aim of this study is to elaborate electro-rheological fluids based on kaolinite. the scientific characterization made it possible the identification of the composite nature and the checking of the intercalation of the polymer among the clay particles The rheological behaviour of the fluid depends on the electric field. A yield stress of the suspensions is observed, which increases with the applied electric field. An interpretation based on the different modes of association between the clay particles is proposed to account qualitatively for the observed behaviour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-41

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Baudet: L'industrie Céramique N° 753 (1981), p.627.

Google Scholar

[2] H. Van Olphen: Introduction to clay colloid chemistry (Wiley and Sons 2nd eds., New York 1977).

Google Scholar

[3] C. Agami: Bull. Soc. Chim. de France N° 4 (1965), p.1021.

Google Scholar

[4] J. Courtot-Coupez and M. Le Demeyet: Bull. Soc. Chim. de France N° 3 (1969), p.1033.

Google Scholar

[5] R. Thomas, C.B. Shoemaker and E. Eriks: Acta cryst. N° 21 (1966), p.12.

Google Scholar

[6] D.L. Carter, M.D. Heilman and C.L. Gonzalez: Ethylene glycol monoethyl ether for determining surface area of silicate minerals. Soil Sci 100 (1965), p.356.

DOI: 10.1097/00010694-196511000-00011

Google Scholar

[7] R.K. Taylor: Cation exchange in clays and mud rocks by methylene blue. Journal of Chemical Technology and Biotechnology. Vol. 35 A (1985), pp.195-207.

Google Scholar

[8] AFNOR Sols. Reconnaissance et Essais - Détermination des limites d'Atterberg - Limite de liquidité à la coupelle - Limite de plasticité au rouleau. Association Française de Normalisation (1993).

Google Scholar

[9] A.H. Weir and R. Greene-kelly: Beidellite. Am Miner Vol. 47 (1962), p.137.

Google Scholar

[10] A.B. Williams and G.W. Donaldson: Building on expansive soils in South Africa: 1973-1980, Proc of 4th int conf on expansive soils (1980).

Google Scholar

[11] S. Laribi, B. Jouffrey and J.M. Fleureau: Eur. Phys. J. 39 (2007), p.257.

Google Scholar

[12] D. Tessier: Etude expérimentale de l'organisation des matériaux argileux. Doctoral Thesis. University of Paris 6, France (1984).

Google Scholar

[13] R.L. Frost, E. Mako and J. Kristof: J. Colloid Interface Sci. No. 239 (2001), p.458.

Google Scholar

[14] R.L. Frost: Journal of Physical Chemistry (1999).

Google Scholar

[15] B.X. Wang: Journal of Solid State Chemistry Vol. 179, N° 3 (2006), p.949.

Google Scholar

[16] A. Benchabane: Doctoral Thesis, University of Strasbourg I, France (2006).

Google Scholar

[17] L. Le Pluart, J. Duchet, H. Sautereau and P. Halley: Applied Clay Science Vol. 25, N° 3-4 (2004), p.207.

DOI: 10.1016/j.clay.2003.11.004

Google Scholar

[18] S. Letaief and C. Detellier: J. Mater. Chem., N° 17 (2005), p.1476.

Google Scholar

[19] J. Tunney and C. Detellier: Chem Mater., N° 8 (1996), p.927.

Google Scholar

[20] J. Tunney and C. Detellier: Chem Mater., N° 5 (1993), p.747.

Google Scholar

[21] J.B. Dixon and S.B. Weed: Soil Sci Soc Am. (1977).

Google Scholar

[22] S. Caillère, S. Henin and M. Rautureau: Minéralogie des argiles Vol. 1-2 (Masson (eds. ), Paris 1982).

Google Scholar

[23] J.W. Kim, H. Noh, J. Choi, D.C. Lee and S. Jhon: Polymer 41 (2000), p.1229.

Google Scholar

[24] I.S. Lee, J. Y Lee, J.H. Sung, H. J Choi: Synthetic metals. 152 (2005), p.173.

Google Scholar

[25] J.S. Reeds: John Wiley & sounds (eds. ) (1998), p.227.

Google Scholar

[26] C. Boissy, P. Atten and J.N. Foulc: J. Phys. III France. N° 5 (1995), p.677.

Google Scholar