Machined Surface Characteristics and Removal Mechanism of Soft and Brittle Solids

Abstract:

Article Preview

Surface characteristics of CZT wafers machined using wire sawing, free abrasives lapping and polishing and ultra-precision grinding were investigated. Wire sawing resulted in the removal of material in both ductile and brittle regimes, but both polishing and grinding led to a ductile removal. The grinding produced very smooth surfaces free of embeddings and scratches, which is thus considered to have better machinability than the free abrasive machining. The nanoindentation and nanoscratch on MCT wafers at nanometric scales resulted in considerable plastic deformation, but no fracture features. The hardness of the MCT wafer was 500 to 550 MPa, and the coefficient of friction was particularly high, ranging from 0.45 to 0.55.

Info:

Periodical:

Key Engineering Materials (Volumes 447-448)

Edited by:

Jianhong Zhao, Masanori Kunieda, Guilin Yang and Xue-Ming Yuan

Pages:

183-187

DOI:

10.4028/www.scientific.net/KEM.447-448.183

Citation:

Z. Y. Zhang et al., "Machined Surface Characteristics and Removal Mechanism of Soft and Brittle Solids", Key Engineering Materials, Vols. 447-448, pp. 183-187, 2010

Online since:

September 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.