A Portable Device for Fabricating Biomaterial Microfiber Bundles

Article Preview

Abstract:

Engineered tendon and ligament scaffolds are ideally a bunch of biocompatible and biodegradable microfibers that are three-dimensionally aligned with no fusion between individual fibers. In this paper, a simple yet effective device that is able to fabricate this nearly native structure is presented, including design and operation method. Briefly, the device is die-free and requires only simple components such as a plate with an orifice, an aluminum holder, a ring heater and a rotating mandrel. The fabrication is done by a single step with microfiber (10 µm diameter) bundles being directly obtained at a very low take-up speed. The as-spun microfiber bundles appear silvery and shiny, apparently similar to a native tendon. This device and the method associated opens up a new way to diversify the structure of biomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 447-448)

Pages:

750-754

Citation:

Online since:

September 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu, et al.: Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, Vol. 24(26) (2003), pp.4833-4841.

DOI: 10.1016/s0142-9612(03)00374-0

Google Scholar

[2] N. L'Heureux, N. Dusserre, G. Konig, B. Victor, P. Keire, T. N. Wight, et al.: Human tissue-engineered blood vessels for adult arterial revascularization. Nature Medicine, Vol. 12(3) (2006), pp.361-365.

DOI: 10.1038/nm1364

Google Scholar

[3] S. Y. Chew, R. Mi, A. Hoke, and K. W. Leong: Aligned protein-polymer composite fibers enhance nerve regeneration: A potential tissue-engineering platform. Advanced Functional Materials, Vol. 17(8) (2007), pp.1288-1296.

DOI: 10.1002/adfm.200600441

Google Scholar

[4] C. K. Chua, K. F. Leong, K. H. Tan, F. E. Wiria, and C. M. Cheah: Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. Journal of Materials Science: Materials in Medicine, Vol. 15(10) (2004).

DOI: 10.1023/b:jmsm.0000046393.81449.a5

Google Scholar

[5] R. L. Simpson, F. E. Wiria, A. A. Amis, C. K. Chua, K. F. Leong, U. N. Hansen, et al.: Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, Vol. 84(1) (2008).

DOI: 10.1002/jbm.b.30839

Google Scholar

[6] K. F. Leong, C. K. Chua, N. Sudarmadji, and W. Y. Yeong: Engineering functionally graded tissue engineering scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, Vol. 1(2) (2008), pp.140-152.

DOI: 10.1016/j.jmbbm.2007.11.002

Google Scholar

[7] C. K. Chua, N. Sudarmadji and K. F. Leong. Process Flow for Designing Functionally Graded Tissue Engineering Scaffolds. in Proceedings of the 4th International Conference on Advanced Research in Virtual and Rapid Prototyping: Innovative Developments in Design and Manufacturing Advanced Research in Virtual and Rapid Prototyping 2009. pp.45-49.

DOI: 10.1201/9780203859476.ch6

Google Scholar

[8] D. Deng, W. Liu, F. Xu, Y. Yang, G. Zhou, W. J. Zhang, et al.: Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Biomaterials, Vol. 30(35) (2009), pp.6724-6730.

DOI: 10.1016/j.biomaterials.2009.08.054

Google Scholar

[9] Y. Liu, H. S. Ramanath and D. A. Wang: Tendon tissue engineering using scaffold enhancing strategies. Trends in Biotechnology, Vol. 26(4) (2008), pp.201-209.

DOI: 10.1016/j.tibtech.2008.01.003

Google Scholar

[10] C. K. Chua, J. An and K. F. Leong. Spinning of Biomaterial Microfibers for Tendon Tissue Engineering. in Proceedings of the 4th International Conference on Advanced Research in Virtual and Rapid Prototyping: Innovative Developments in Design and Manufacturing Advanced Research in Virtual and Rapid Prototyping 2009. pp.31-35.

DOI: 10.1201/9780203859476.ch4

Google Scholar

[11] J. L. Ricci, A. G. Gona, H. Alexander, and J. R. Parsons: Morphological characteristics of tendon cells cultured on synthetic fibers. Journal of Biomedical Materials Research, Vol. 18(9) (1984), pp.1073-1087.

DOI: 10.1002/jbm.820180910

Google Scholar

[12] C. M. Hwang, Y. Park, J. Y. Park, K. Lee, K. Sun, A. Khademhosseini, et al.: Controlled cellular orientation on PLGA microfibers with defined diameters. Biomedical Microdevices, (2009), pp.1-8.

DOI: 10.1007/s10544-009-9287-7

Google Scholar

[13] Q. P. Pham, U. Sharma and A. G. Mikos: Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Engineering, Vol. 12(5) (2006), pp.1197-1211.

DOI: 10.1089/ten.2006.12.1197

Google Scholar

[14] T. J. Sill and H. A. von Recum: Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, Vol. 29(13) (2008), p.1989-(2006).

DOI: 10.1016/j.biomaterials.2008.01.011

Google Scholar

[15] M. R. Williamson and A. G. A. Coombes: Gravity spinning of polycaprolactone fibres for applications in tissue engineering. Biomaterials, Vol. 25(3) (2004), pp.459-465.

DOI: 10.1016/s0142-9612(03)00536-2

Google Scholar

[16] C. M. Hwang, A. Khademhosseini, Y. Park, K. Sun, and S. H. Lee: Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Langmuir, Vol. 24(13) (2008), pp.6845-6851.

DOI: 10.1021/la800253b

Google Scholar