[1]
M.A. Biot: The interaction of Rayleigh and Stoneley waves in the ocean bottom. Bull. Seism. Soc. Am. 42, (1952), pp.81-93.
DOI: 10.1785/bssa0420010081
Google Scholar
[2]
W.M. Ewing, W.S. Jardetzky and F. Press: Elastic waves in layered earth (McGraw-Hill Book Co., 1957).
Google Scholar
[3]
M. Yoshida: Velocity and response of higher mode Rayleigh waves for the Pacific Ocean, Bull. Earthq. Res. Inst., vol. 53 (1978), pp.1135-1150.
Google Scholar
[4]
M. Yoshida: Group velocity distributions of Rayleigh waves and two upper mantle models in the Pacific Ocean, Bull. Earthq. Res. Inst., vol. 53 (1978), pp.319-338.
Google Scholar
[5]
O.C. Zienkiewicz and P. Bettess: Fluid-structure dynamic interactionand wave forces, an introduction to numerical treatment, Internat. J. Numer. Meth. Eng., vol. 13 (1978), pp.1-16.
DOI: 10.1002/nme.1620130102
Google Scholar
[6]
C. Thomas, H. Igel, M. Weber and F. Scherbaum: Acoustic simulation of P-wave propagation in aheterogeneous spherical earth: numerical method andapplication to precursor waves to PKPdf., Geophys. J. Int., 141 (2000), pp.6441-6464.
DOI: 10.1046/j.1365-246x.2000.00079.x
Google Scholar
[7]
J.M. Carcione, B. H. Helle, G. Seriani1 and M.P. Plasencia Linares: Simulation of seismograms in a 2-D viscoelastic Earth by pseudospectral methods, Geofísica Internacional, vol. 44 (2005), pp.123-142.
DOI: 10.22201/igeof.00167169p.2005.44.2.248
Google Scholar
[8]
D. Komatitsch, C. Barnes and J. Tromp: Wave propagation near a fluid-solid interface: a spectral-element approach, Geophysics, J., Vol. 65 (2000), pp.623-631.
DOI: 10.1190/1.1444758
Google Scholar
[9]
F.J. Sánchez-Sesma and M. Campillo: Diffraction of P, SV and Rayleigh waves by topographic features; a boundary integral formulation, Bull. Seism. Soc. Am., vol. 81 (1991), pp.1-20.
Google Scholar
[10]
V.D. Kupradze: Dynamical problems in elasticity, In Progress in Solid Mechanics. I. N. Sneddon and R. Hill (eds), North-Holland, Amsterdam, vol. III (1963).
Google Scholar
[11]
A. Rodríguez-Castellanos, F. Luzón and F.J. Sánchez-Sesma: Diffraction of seismic waves in an elastic cracked half-plane using a Boundary Integral Formulation. Soil Dynam. and Earthq. Enging., 25 (2005), pp.827-837.
DOI: 10.1016/j.soildyn.2005.04.009
Google Scholar
[12]
A. Rodríguez-Castellanos, F.J. Sánchez-Sesma, F. Luzón and R. Martin: Multiple scattering of elastic waves by subsurface fractures and cavities, Bull. Seis. Soc. of Am., 96 (2006), pp.1359-1374.
DOI: 10.1785/0120040138
Google Scholar
[13]
A. Rodríguez-Castellanos, R. Avila-Carrera and F.J. Sánchez-Sesma: Scattering of Rayleighwaves by surface-breaking cracks: an integral formulation, Geofísica Internacional, 46 (2007), pp.241-248.
DOI: 10.22201/igeof.00167169p.2007.46.4.48
Google Scholar
[14]
A. Rodríguez-Castellanos, R. Avila-Carrera and F.J. Sánchez-Sesma: Scattering of elastic waves by shallow elliptical cracks, Revista Mexicana de Física, 53 (2007), pp.254-259.
Google Scholar
[15]
R. Avila-Carrera, A. Rodríguez-Castellanos, F.J. Sánchez-Sesma and C. Ortiz-Alemán: Rayleigh-wave scattering by shallowcracks using the indirect boundaryelement method, J. Geophys. Eng., 6 (2009), pp.221-230. doi: 10. 1088/1742-2132/6/3/002.
DOI: 10.1088/1742-2132/6/3/002
Google Scholar
[16]
A. Rodríguez-Castellanos and F.J. Sánchez-Sesma: Numerical Simulation of Multiple Scattering by Hidden Cracks under theIncidence of Elastic Waves, Advanced Materials Research, Trans Tech Publications, Switzerland, 65 (2009), pp.1-8.
DOI: 10.4028/www.scientific.net/amr.65.1
Google Scholar
[17]
C. Ortiz-Alemán, F.J. Sánchez-Sesma, J.L. Rodríguez-Zúñiga and F. Luzón: Computing topographical 3D site effects using a fast IBEM/Conjugate gradient approach, Bull. Seism, Soc. Am., 88 (1998), pp.393-399.
DOI: 10.1785/bssa0880020393
Google Scholar
[18]
S.A. Gil-Zepeda, F. Luzón, J. Aguirre, J. Morales, F.J. Sánchez-Sesma and C. Ortiz-Alemán: 3D Seismic Response of the deep basement structure of the Granada Basin (Southern Spain), Bull. Seism, Soc. Am., 92 (2002), pp.2163-2176.
DOI: 10.1785/0120010262
Google Scholar
[19]
F. Luzón, S.A. Gil-Zepeda, F.J. Sánchez-Sesma and C. Ortiz-Alemán: Three-dimensional simulation of ground motion in the Zafarraya Basin (Southern Spain) up to 1. 335 Hz under incident plane waves, Geophys. J. Int., 156 (2004), pp.584-594.
DOI: 10.1111/j.1365-246x.2004.02142.x
Google Scholar
[20]
P. Borejko: A new benchmark solution for the problem of water-covered geophysical bottom, International Symposium on Mechanical Waves in Solids, Zhejiang University, Hangzhou, China (2006).
Google Scholar
[21]
M. Bouchon and K. Aki: Discrete wave number representation of seismic source wave fields. Bull. Seismol. Soc. Am. Vol 67 (1977), pp.259-277.
DOI: 10.1785/bssa0670020259
Google Scholar
[22]
A. Rito: Wave propagation in layered continuous media by the Indirect Boundary Element Method, Master Degree Thesis, Instituto Politécnico Nacional, México (2009).
Google Scholar
[23]
E. Pineda, M.H. Aliabadi and M. Ortiz-Dominguez: Boundary element analysis for primary and secondary creep problems. Revista Mexicana de Física 54 (2008), pp.341-348.
Google Scholar
[24]
E. Pineda and M.H. Aliabadi: Dual Boundary Element Analysis for Time-Dependent Fracture Problems in Creeping Materials. Key Engineering Materials 383 (2008), pp.109-121.
DOI: 10.4028/www.scientific.net/kem.383.109
Google Scholar