Numerical Formulation to Study Fluid-Solid Interfaces Excited by Elastic Waves

Article Preview

Abstract:

In this paper, the scattering of elastic waves in a fluid-solid interface is researched. The Indirect Boundary Element Method (IBEM) was used to study this wave propagation phenomenon in a 2D fluid-solid model. The source, represented by a Hankel´s function of the second kind, is always applied in the fluid. This approximate boundary integral technique is based upon the integral representation for scattered elastic waves using single-layer boundary sources. The approach presented is usually called IBEM as the sources’ strengths should be obtained as an intermediate step. This indirect formulation can give a deep physical insight to the analyst on the generated diffracted waves, because it is closer to the physical reality and can be regarded as a realization of Huygens’ Principle, which mathematically is fully equivalent to the classical Somigliana’s representation theorem. In order to gauge accuracy, the method was tested by comparing it to an analytical solution. A near interface pulse generates scattered waves that can be registered by sensors located in the fluid. Results are presented in time domain, where several aspects related to the different wave types that emerge from this kind of problems are pointed out.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-61

Citation:

Online since:

September 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Biot: The interaction of Rayleigh and Stoneley waves in the ocean bottom. Bull. Seism. Soc. Am. 42, (1952), pp.81-93.

DOI: 10.1785/bssa0420010081

Google Scholar

[2] W.M. Ewing, W.S. Jardetzky and F. Press: Elastic waves in layered earth (McGraw-Hill Book Co., 1957).

Google Scholar

[3] M. Yoshida: Velocity and response of higher mode Rayleigh waves for the Pacific Ocean, Bull. Earthq. Res. Inst., vol. 53 (1978), pp.1135-1150.

Google Scholar

[4] M. Yoshida: Group velocity distributions of Rayleigh waves and two upper mantle models in the Pacific Ocean, Bull. Earthq. Res. Inst., vol. 53 (1978), pp.319-338.

Google Scholar

[5] O.C. Zienkiewicz and P. Bettess: Fluid-structure dynamic interactionand wave forces, an introduction to numerical treatment, Internat. J. Numer. Meth. Eng., vol. 13 (1978), pp.1-16.

DOI: 10.1002/nme.1620130102

Google Scholar

[6] C. Thomas, H. Igel, M. Weber and F. Scherbaum: Acoustic simulation of P-wave propagation in aheterogeneous spherical earth: numerical method andapplication to precursor waves to PKPdf., Geophys. J. Int., 141 (2000), pp.6441-6464.

DOI: 10.1046/j.1365-246x.2000.00079.x

Google Scholar

[7] J.M. Carcione, B. H. Helle, G. Seriani1 and M.P. Plasencia Linares: Simulation of seismograms in a 2-D viscoelastic Earth by pseudospectral methods, Geofísica Internacional, vol. 44 (2005), pp.123-142.

DOI: 10.22201/igeof.00167169p.2005.44.2.248

Google Scholar

[8] D. Komatitsch, C. Barnes and J. Tromp: Wave propagation near a fluid-solid interface: a spectral-element approach, Geophysics, J., Vol. 65 (2000), pp.623-631.

DOI: 10.1190/1.1444758

Google Scholar

[9] F.J. Sánchez-Sesma and M. Campillo: Diffraction of P, SV and Rayleigh waves by topographic features; a boundary integral formulation, Bull. Seism. Soc. Am., vol. 81 (1991), pp.1-20.

Google Scholar

[10] V.D. Kupradze: Dynamical problems in elasticity, In Progress in Solid Mechanics. I. N. Sneddon and R. Hill (eds), North-Holland, Amsterdam, vol. III (1963).

Google Scholar

[11] A. Rodríguez-Castellanos, F. Luzón and F.J. Sánchez-Sesma: Diffraction of seismic waves in an elastic cracked half-plane using a Boundary Integral Formulation. Soil Dynam. and Earthq. Enging., 25 (2005), pp.827-837.

DOI: 10.1016/j.soildyn.2005.04.009

Google Scholar

[12] A. Rodríguez-Castellanos, F.J. Sánchez-Sesma, F. Luzón and R. Martin: Multiple scattering of elastic waves by subsurface fractures and cavities, Bull. Seis. Soc. of Am., 96 (2006), pp.1359-1374.

DOI: 10.1785/0120040138

Google Scholar

[13] A. Rodríguez-Castellanos, R. Avila-Carrera and F.J. Sánchez-Sesma: Scattering of Rayleighwaves by surface-breaking cracks: an integral formulation, Geofísica Internacional, 46 (2007), pp.241-248.

DOI: 10.22201/igeof.00167169p.2007.46.4.48

Google Scholar

[14] A. Rodríguez-Castellanos, R. Avila-Carrera and F.J. Sánchez-Sesma: Scattering of elastic waves by shallow elliptical cracks, Revista Mexicana de Física, 53 (2007), pp.254-259.

Google Scholar

[15] R. Avila-Carrera, A. Rodríguez-Castellanos, F.J. Sánchez-Sesma and C. Ortiz-Alemán: Rayleigh-wave scattering by shallowcracks using the indirect boundaryelement method, J. Geophys. Eng., 6 (2009), pp.221-230. doi: 10. 1088/1742-2132/6/3/002.

DOI: 10.1088/1742-2132/6/3/002

Google Scholar

[16] A. Rodríguez-Castellanos and F.J. Sánchez-Sesma: Numerical Simulation of Multiple Scattering by Hidden Cracks under theIncidence of Elastic Waves, Advanced Materials Research, Trans Tech Publications, Switzerland, 65 (2009), pp.1-8.

DOI: 10.4028/www.scientific.net/amr.65.1

Google Scholar

[17] C. Ortiz-Alemán, F.J. Sánchez-Sesma, J.L. Rodríguez-Zúñiga and F. Luzón: Computing topographical 3D site effects using a fast IBEM/Conjugate gradient approach, Bull. Seism, Soc. Am., 88 (1998), pp.393-399.

DOI: 10.1785/bssa0880020393

Google Scholar

[18] S.A. Gil-Zepeda, F. Luzón, J. Aguirre, J. Morales, F.J. Sánchez-Sesma and C. Ortiz-Alemán: 3D Seismic Response of the deep basement structure of the Granada Basin (Southern Spain), Bull. Seism, Soc. Am., 92 (2002), pp.2163-2176.

DOI: 10.1785/0120010262

Google Scholar

[19] F. Luzón, S.A. Gil-Zepeda, F.J. Sánchez-Sesma and C. Ortiz-Alemán: Three-dimensional simulation of ground motion in the Zafarraya Basin (Southern Spain) up to 1. 335 Hz under incident plane waves, Geophys. J. Int., 156 (2004), pp.584-594.

DOI: 10.1111/j.1365-246x.2004.02142.x

Google Scholar

[20] P. Borejko: A new benchmark solution for the problem of water-covered geophysical bottom, International Symposium on Mechanical Waves in Solids, Zhejiang University, Hangzhou, China (2006).

Google Scholar

[21] M. Bouchon and K. Aki: Discrete wave number representation of seismic source wave fields. Bull. Seismol. Soc. Am. Vol 67 (1977), pp.259-277.

DOI: 10.1785/bssa0670020259

Google Scholar

[22] A. Rito: Wave propagation in layered continuous media by the Indirect Boundary Element Method, Master Degree Thesis, Instituto Politécnico Nacional, México (2009).

Google Scholar

[23] E. Pineda, M.H. Aliabadi and M. Ortiz-Dominguez: Boundary element analysis for primary and secondary creep problems. Revista Mexicana de Física 54 (2008), pp.341-348.

Google Scholar

[24] E. Pineda and M.H. Aliabadi: Dual Boundary Element Analysis for Time-Dependent Fracture Problems in Creeping Materials. Key Engineering Materials 383 (2008), pp.109-121.

DOI: 10.4028/www.scientific.net/kem.383.109

Google Scholar