New Theoretical Approach of the Fracture Ductility of Steels and its Relation with the Microscopy Structural Characterization

Article Preview

Abstract:

It is well known that the formation of a highly hardening state of the standard steels is related with the improvement of its mechanical characteristics, which means an increment in the ductility of the fracture. Commonly, the ductility of the fracture is measured by means of mechanical methods involving large size and geometrical special shape of the sample. Satisfy these requirements in the initial steps of the development of a new material, or during the treatment for improving the hardness, is a dif ficult task. The present work shows the theoretical determination of the ductility of the fracture when the researchers have a small piece of the sample. Also, from the analysis of microscopy images, by the first time, it is demonstrated that an ultra-hardening state of the steel corresponds to a nano-fragmented dislocational structure in accordance to the theory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-103

Citation:

Online since:

September 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nott, Dg. F. Osnovye mejaniki razrusheniya M. Metallurgiya 255 s, (1978).

Google Scholar

[2] Hirth D, Lotte I Teoria dislokacii. M. Atomizdat. 599 s, (1972).

Google Scholar

[3] Novikov II, Yermishkin VA Fizicheskaya mejanika realnyej materialov M. Nauka. 323 s, (2004).

Google Scholar

[4] VA Yermishkin, P Tamayo Meza, N Muñoz Aguirre, SP Kulagin and NA Minina, Fracture of 08KP steel at nano-fragmented state, Proceedings of NSTI Nanotech2009-International Conference and Exposition Vol. 1, 405-408 (2009).

Google Scholar

[5] Hertzberg RW. Deformation and fracture mechanics of engineering materials, New York: John Wiley and Sons, 697 (1973).

Google Scholar

[6] Novikov II, Yermishkin VA, Kulagin SP, i dr. Avtorskoe svidetel*stvo №1786132. Sposob mejaniko-termicheskoi obrabotki konstrukcionnyej splavov» (1992).

Google Scholar

[7] Yermishkin VA, Minina NA, Fedotova NL Patent na izobretenie №2300758 «Sposob differencial*nogo dilatometricheskogo analiza obrazcov issleduemyej materialov v kontrastnyej strukturnyej sostoyaniyaj» (2007).

Google Scholar

[8] Novikov II, Yermishkin VA, Mikromejanizmye razrusheniya metallov M. Nauka. 366 s, (1991).

Google Scholar

[9] Kachanov LM Osnovye mejaniki razrusheniya M. Nauka. 311 s, (1974).

Google Scholar

[10] Iu. Zhilyaev, D. Grabco, D. Leu, V. Botnariuc and S. Raevskii. Philosophical Magazine A. Vol 82, No. 10, 2217-2221 (2002).

DOI: 10.1080/01418610208235732

Google Scholar

[11] A. I. Dmitriev and S. G. Psakhie, Technical Physics Letters. Vol 30, No. 8, 677-678 (2004).

Google Scholar

[12] M. J. Zehetbauer, L. F. Zeipper and E. Schafler, Nanostructured Materials by High-Pressure Severe Plastic Deformation. Editors Y.T. Zhu and V. Varyukhin, Springer, 217-226 (2006).

DOI: 10.1007/1-4020-3923-9_30

Google Scholar

[13] R. Z. Valiev. Nanostructured Materials by High-Pressure Severe Plastic Deformation. Editors Y.T. Zhu and V. Varyukhin, Springer, 217-226 (2006).

Google Scholar

[14] M. J. Zehetbauer, L. F. Zeipper and E. Schafler, Nanostructured Materials by High-Pressure Severe Plastic Deformation. Editors Y.T. Zhu and V. Varyukhin, Springer, 217-226 (2006).

DOI: 10.1007/1-4020-3923-9_30

Google Scholar