Computer Modelling of Dynamic Fracture Experiments

Article Preview

Abstract:

In this work the time-domain boundary element method (BEM) is applied to simulate dynamic fracture experiments. The fast fracture is modelled by adding new boundary elements at the crack tip. The direction of crack growth is perpendicular to the direction of maximum circumferencial stress. The time dependent loading of specimens and velocities of crack growth are taken from experiments as input data for computer simulations. The method is used to analyze: a short beam specimen, a special mixed-mode specimen and a three-point bend specimen subjected to impact loads. The dynamic stress intensity factors (DSIF) and the crack paths are compared with the results obtained by other authors who used the finite element method (FEM) and experimental methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-125

Citation:

Online since:

December 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.B. Freund: Dynamic fracture mechanics, Cambridge University Press, Cambridge (1990).

Google Scholar

[2] T. Nishioka: Optics Lasers Eng., Vol. 32 (1999), pp.205-255.

Google Scholar

[3] T. Nishioka, H. Tokudome and M. Kinoshita: Int. J. Solids Struct., Vol. 38 (2001), p.52735301.

Google Scholar

[4] H.D. Bui, H. Maigre and D. Rittel: Int. J. Solids Struct., Vol. 29 (1992), pp.2881-2895.

Google Scholar

[5] H. Maigre and D. Rittel: Int. J. Solids Struct., Vol. 30 (1993), pp.3233-3244.

Google Scholar

[6] H. Maigre and D. Rittel: Int. J. Fract., Vol. 73 (1995), pp.67-79.

Google Scholar

[7] D. Rittel and H. Maigre: Mech. Mater., Vol. 23 (1996), pp.229-239.

Google Scholar

[8] G. Weisbrod and D. Rittel: Int. J. Fract., Vol. 104 (2000), pp.89-103.

Google Scholar

[9] D. Gregorie, H. Maigre, J. Rethore and A. Combescure: Int. J. Solids Struct., Vol. 44 (2007), pp.6517-6534.

Google Scholar

[10] A. Combescure, A. Gravouil, D. Gregorie and J. Rethore: Comp. Meth. Appl. Mech. Eng. Vol. 197 (2008), pp.309-318.

Google Scholar

[11] J. Dominguez: Boundary elements in dynamics, Computational Mechanics Publications, Southampton (1993).

Google Scholar

[12] P. Fedelinski, M.H. Aliabadi and D.P. Rooke: Int. J. Solids Struct., Vol. 32 (1995), p.35553571.

Google Scholar

[13] P. Fedelinski, M.H. Aliabadi and D.P. Rooke: Int. J. Numer. Meth. Eng., Vol. 40 (1997), pp.1555-1572.

Google Scholar

[14] P. Fedelinski: Eng. Anal. Bound. Elem., Vol. 28 (2004), pp.1135-1147.

Google Scholar

[15] Th. Sellig and D. Gross: Int. J. Solids Struct., Vol. 34 (1997), pp.2087-2103.

Google Scholar

[16] Th. Seelig and D. Gross: Acta Mech., Vol. 132 (1999), pp.47-61.

Google Scholar

[17] Th. Seelig, D. Gross and K. Pothmann: Int. J. Fract., Vol. 99 (1999), pp.325-338.

Google Scholar