Stress Intensity Factor Evaluation of Anisotropic Cracked Sheets under Dynamic Loads Using Energy Domain Integral

Article Preview

Abstract:

The aim of this paper is to present a procedure to perform the evaluation of dynamic stress intensity factors of composite cracked sheets. The numerical method that is used to perform the modeling of the crack is the dual boundary element method. The inertial effects are modeled using the dual reciprocity boundary elements method. The Houbolt Method is used to integrate time, and the energy domain integral is used to evaluate stress intensity factors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-112

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. E. Blandford, A. R. Ingraffea, and J. A. Ligget, Two dimensional stress intensity factor computation using the boundary element method. International Journal for Numerical Methods in Engineering 17: 387-404 (1981).

DOI: 10.1002/nme.1620170308

Google Scholar

[2] J. Domdinguez and R. Gallego, Time domain boundary element method for dynamic stress intensity factor computation. International Journal of Numerical Methods in Engineering 33: 635-647 (1992).

DOI: 10.1002/nme.1620330309

Google Scholar

[3] F. Garcia-Sanchez, C. Z. Zhang, A. Saez. A two-dimensional time-domain boundary element method for dynamic crack problems in anisotropic solids. Engineering Fracture Mechanics 75: 1412-1430 (2008).

DOI: 10.1016/j.engfracmech.2007.07.021

Google Scholar

[4] P. Fedelinski and M. H. Aliabadi, The Dual boundary element method in dynamic fracture mechanics. Engineering Analysis with Boundary Elements 12: 203-210 (1993).

DOI: 10.1016/0955-7997(93)90016-e

Google Scholar

[5] P. Fedelinski and M. H. Aliabadi, The Dual boundary element method: ˆJ-integral for dynamic stress intensity factors. International Journal of Fracture 65: 369-381 (1994).

DOI: 10.1007/bf00012375

Google Scholar

[6] J. Sladek, V. Sladek, and P. Fedelinski, Computation of the second fracture parameter in elastodynamics by the boundary element method. Advances in Engineering Software 30: 725-734 (1999).

DOI: 10.1016/s0965-9978(99)00019-8

Google Scholar

[7] E. L. Albuquerque, P. Sollero, and M. H. Aliabadi, The boundary element method applied to time dependent problems in anisotropic materials. International Journal of Solids and Structures, 39: 1405-1422 (2002).

DOI: 10.1016/s0020-7683(01)00173-1

Google Scholar

[8] E. L. Albuquerque, P. Sollero, and M. H. Aliabadi, Dual boundary element method for anisotropic dynamic fracture mechanics. International Journal for Numerical Methods in Engineering, 59: 1187-1205 (2004).

DOI: 10.1002/nme.912

Google Scholar

[9] A. Portela, M. H. Aliabadi, and D. P. Rooke, The dual boundary element method: Effective implementation for crack problems. International Journal for Numerical Methods in Engineering, 33: 1269-1287 (1982).

DOI: 10.1002/nme.1620330611

Google Scholar

[10] M. Kögl and L. Gaul, A boundary element method for transient piezoelectric analysis. Engineering Analysis with Boundary Elements, 24: 591-598 (2000).

DOI: 10.1016/s0955-7997(00)00039-4

Google Scholar

[11] J. C. Houbolt, A recurrence matrix solution for the dynamic response of elastic aircraft. Journal of Aeronautical and Science, 17: 540-550 (1950).

DOI: 10.2514/8.1722

Google Scholar

[12] A. P. Cisilino, M. H. Aliabadi, and J. L. Otegui. Energy domain integral applied to solve center and double edge crack problems in three-dimensions. Theoretical and Applied Fracture Mechanics 29: 181-194 (1998).

DOI: 10.1016/s0167-8442(98)00029-9

Google Scholar

[13] R. Balderrama, A. P. Cisilino, and M. Martinez. Boundary element analysis of threedimensional mixed-mode thermoelastic crack problems using the interaction and energy domain integrals. International Journal for Engineering Material 74: 294-320 (2008).

DOI: 10.1002/nme.2168

Google Scholar

[14] B. Moran and C. F. Shih. A general treatment of crack tip contour integrals. International Journal of Fracture 35: 295-310 (1987).

DOI: 10.1007/bf00276359

Google Scholar

[15] C. F. Shih, B. Moran, and A. Neddleman. Energy release rate along a three-dimensional crack front in a thermally stresses body. International Journal of Fracture 30: 79-102 (1986).

DOI: 10.1007/bf00034019

Google Scholar

[16] F. Z. Li, , C. F. Shih, and A. Needleman. A comparison of methods for calculating energy release rates. Engineering in Fracture Mechanics 21: 405-421 (1985).

DOI: 10.1016/0013-7944(85)90029-3

Google Scholar

[17] P. Sollero and M. H. Aliabadi. Crack growth analysis in homogeneous orthotropic laminates. Composites Science and Technology 58: 1697-1703 (1998).

DOI: 10.1016/s0266-3538(97)00240-6

Google Scholar

[18] Y. M. Chen, Numerical computation of dynamic stress intensity factors by a Lagrangian finitedifference method. Engineering Fracture Mechanics, 7: 653-660 (1975).

DOI: 10.1016/0013-7944(75)90021-1

Google Scholar

[19] Z. Hua, F. Tian-You, and T. Lan-Quao, Composite materials dynamic fracture studies by generalized Shmuely difference algorithm. Engineering Fracture Mechanics, 54: 869-877 (1996).

DOI: 10.1016/0013-7944(95)00147-6

Google Scholar