Modeling of the Divorced Eutectic Solidification of Spheroidal Graphite Cast Iron

Article Preview

Abstract:

The solidification of the austenite-spheroidal graphite (SG) eutectic is one of the most complex and therefore most difficult liquid-to-solid transformations to describe through computational modeling. This is because the iron-carbon equilibrium phase diagram is an asymmetric diagram that predicts that at relatively low solidification velocities it is possible to produce primary austenite in a casting of eutectic composition. In addition, the two phases of the eutectic solidify as a divorced eutectic, with only the austenite being in contact with the eutectic liquid. The paper proposes a computational model for the eutectic solidification of SG iron with visualization of the microstructure evolution using a cellular automaton technique. The model is an extension of the earlier Zhu-Stefanescu model for primary phase solidification and includes the growth of primary SG in the liquid, of primary austenite and of the austenite-graphite eutectic controlled by carbon diffusion through the solid austenite shell. The model outputs realistic images of the microstructure evolution from the beginning to the end of eutectic solidification of SG cast iron.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

324-329

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Scheil and L. Hütter, Arch. Eisenhuttenwesen: 4 (1953) 24.

Google Scholar

[2] S.E. Wetterfall, H. Fredriksson and M. Hillert: J. Iron and Steel Inst., (1972) 323.

Google Scholar

[3] R. Ruxanda, L. Beltran-Sanchez, J. Massone, and D.M. Stefanescu: Proceedings of Cast Iron Division, AFS 105th Casting Congress, American Foundry Soc., Des Plaines IL, (2001) 37.

Google Scholar

[4] Y.X. Li, B.C. Liu and C.R. Loper Jr.: AFS Trans., 98 (1990) 483-488.

Google Scholar

[5] G. Rivera, R. Boeri, and J. Sikora: Advanced Materials Research, 4-5 (1997) 169.

Google Scholar

[6] D.M. Stefanescu, Science and Eng. of Casting Solidification, 2nd Edition, Springer (2009) 402 p.

Google Scholar

[7] S.E. Wetterfall, H. Fredriksson and M. Hillert: J. Iron and Steel Inst., (1972) 323.

Google Scholar

[8] H. Fredriksson and L. Svensson: in The Physical Metallurgy of Cast Iron, H. Fredriksson and M. Hillert eds., Elsevier, (1985) 273-284.

Google Scholar

[9] H. Fredriksson and L. Svensson: in Solidification Processing of Eutectic Alloys, D.M. Stefanescu, G.J. Abbaschian, R.J. Bayuzick eds., TMS, Warrendale Pa., (1988) 153-162.

Google Scholar

[10] E. Fras, W. Kapturkiewicz, A.A. Burbielko: in Modeling of Casting, Welding and Advanced Solidification Processes - VII, M. Croos and J. Campbell eds., TMS, Warrendale Pa., (1995) 679-686.

Google Scholar

[11] K.C. Su, I. Ohnaka, I. Yamauchhi and T. Fukusako: in The Physical Metallurgy of Cast Iron, H. Fredriksson and M. Hillert eds., Elsevier, (1985) 181-189.

Google Scholar

[12] G. Lesoult, M. Castro and J. Lacaze: Acta mater., 46 (1998) 983.

Google Scholar

[13] H. Zhao, B.C. Liu, Int. J. of Cast Metals Research, 16 (2003) 281.

Google Scholar

[14] Ch. Charbon and M. Rappaz: in Physical Metallurgy of Cast Iron V, G. Lesoult and J. Lacaze eds., Scitec Publications, Switzerland, (1997) 453-460.

Google Scholar

[15] M.F. Zhu and D.M. Stefanescu: Acta Materialia, 55 (2007) 1741-1755.

Google Scholar

[16] R. Sasikumar and R. Sreenivasan, Acta Metallurgica et Materialia, 42 (1994) 2381-2386.

DOI: 10.1016/0956-7151(94)90316-6

Google Scholar