Simulation of the Ductile Iron Solidification Using a Cellular Automaton

Article Preview

Abstract:

The mathematical model of the globular eutectic solidification in 2D was designed. Pro¬posed model is based on the Cellular Automaton Finite Differences (CA-FD) calculation method. Model has been used for studies of the primary and of globular eutectic grains growth during the ductile iron (DI) solidification. A hyper-eutectic composition has been analyzed but this model can be used in the solidification modeling of hypo- and eutectic DI. The proposed model makes possible to trace the unrestricted growth of primary grains of two phases from the liq¬uid, transition from free to cooperative solidification, and cooperative growth of globular eutectic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

330-336

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.M. Stefanescu, A. Catalina, X. Guo, L. Chuzhoy, M.A. Pershing and G.L. Biltgen: in Modeling of Casting, Welding and Advanced Solidification Process, edited by B.G. Thomas, C. Beckermann / TMS, Warrendale (1998), p.455.

Google Scholar

[2] S.M. Yoo, A. Ludwig and P.R. Sahm: in Solidification Processing 1997, edited by J. Beech, H. Jones / Ranmoor House, Univ. of Sheffield (1997), p.497.

Google Scholar

[3] S. Chang, D. Shangguan and D. Stefanescu: Metal. Trans. A, Vol. 23A (1992), p.1333.

Google Scholar

[4] T. Skaland, O. Grong and T. Grong: Metal. Trans. A, Vol. 24A (1993), p.2347.

Google Scholar

[5] G. Lesoult, M. Castro and J. Lacaze: Acta Mater., Vol. 46 (1998), p.983, p.997.

Google Scholar

[6] M. Onsoien, O. Grong, O. Gundersen and T. Skaland: Metl. Mat. Trans. A, Vol. 30A (1999) p.1053.

Google Scholar

[7] E. Fraś, W. Kapturkiewicz, A.A. Burbelko, H.F. Lopez, in: Modeling of Casting, Welding and Advanced Solidification Processes IX, ed. P. Sahm, P.N. Hansen, J.G. Conley, Aachen, Shaker (2000), p.885.

Google Scholar

[8] D.M. Stefanescu, D.K. Bandyopadhyay, in: Proc. 3rd Int. Symp. on Metallurgy of cast iron, Tokyo, Japan, (1989), p.15.

Google Scholar

[9] D.K. Banerjee, D.M. Stefanescu: AFS Transactions Vol. 99 (1991), p.747.

Google Scholar

[10] G.L. Rivera, R. Boeri and J. Sikora: Cast Metals Vol. 8 (1995), p.1.

Google Scholar

[11] D.J. Celentano, P.M. Dardati, L.A. Godoy and R.E. Boeri: Int. J. Cast Metals Res. Vol. 21 (2008), p.416.

Google Scholar

[12] H. Rafii-Tabar, A. Chirazi: Physics Reports-Review Section of Physics Letters Vol. 365 (2002), p.145.

Google Scholar

[13] P.D. Lee, A. Chirazi, R.C. Atwood and W. Wang: Mat. Sci. Eng. A Vol. 365 (2004), p.57.

Google Scholar

[14] A.R. Umantsev, V.V. Vinogradov and V.T. Borisov: Kristallografia Vol. 30 (1985), p.455.

Google Scholar

[15] M. Rappaz, Ch.A. Gandin: Acta Metallurgica et Materialia Vol. 41 (1993), p.345.

Google Scholar

[16] S. Pan, M. Zhu: Acta Materialia Vol. 58 (2010), p.340.

Google Scholar

[17] G. Guillemot, Ch.A. Gandin and M. Bellet: Journal of Crystal Growth Vol. 303 (2007), p.58.

Google Scholar

[18] L. Beltran-Sanchez, D.M. Stefanescu: Metall. Mat. Trans. A Vol. 35 (2004), p.2471.

Google Scholar

[19] V. Pavlyk, U. Dilthey: Modelling and Simulation in Materials Science and Engineering Vol. 12 (2004), p.33.

Google Scholar

[20] M.F. Zhu, C.P. Hong: ISIJ International Vol. 42 (2002), p.520.

Google Scholar

[21] D.J. Jarvis, S.G.R. Brown and J.A. Spittle: Mat. Sci. Techn. Vol. 16 (2000), p.1420.

Google Scholar

[22] A.A. Burbelko, E. Fraś, W. Kapturkiewicz and D. Gurgul: Mat. Sci. Forum Vol. 649 (2010), p.217.

Google Scholar

[23] A.A. Burbelko, E. Fraś, W. Kapturkiewicz and E. Olejnik: Mat. Sci. Forum Vol. 508 (2006), p.405.

DOI: 10.4028/www.scientific.net/msf.508.405

Google Scholar

[24] S.G.R. Brown, N.B. Bruce: Journal of Materials Science Vol. 30 (1995), p.1144.

Google Scholar

[25] MF. Zhu, CP. Hong: Physical Review B Vol. 66 (2002), art. No. 155428.

Google Scholar

[26] M.F. Zhu, C.P. Hong, D.M. Stefanescu and Y.A. Chang: Metall. Mater. Trans. B Vol. 38B (2007), p.517.

Google Scholar

[27] Chalmers B.: Principles of Solidification. John Wiley, New York, (1964).

Google Scholar

[28] U. Dilthley, V. Pavlik, in: Modeling of Casting, Welding and Advanced Solidification Processes VIII, edited by B.G. Thomas, C. Beckermann, Warrendale, TMS (1998), p.589.

Google Scholar

[29] A.A. Burbelko, W. Kapturkiewicz and D. Gurgul, in: Solidification Processing 2007, edited by H. Jones, The University of Sheffield, UK, (2007), p.31.

Google Scholar

[30] O. Kubaschewski, in: Iron - Binary Phase Diagrams, Springer-Verlag Berlin (1985).

Google Scholar

[31] Ch. -A. Gandin, M. Rappaz: Acta Metall. Mater. Vol. 42 (1994), p.2233.

Google Scholar

[32] E. Fraś, K. Wiencek, M. Górny and H. Lopez: Archives of Metallurgy Vol. 46 (2001), p.317.

Google Scholar

[33] Tables of physical quantities, ed. I. K. Kikoin, Moscow, Avtomizdat (1976), in Russian.

Google Scholar

[34] P. Magnin, J.T. Mason, R. Trivedi: Acta Metall. Mater. Vol. 39 (1991), p.453.

Google Scholar

[35] G. Rivera, R. Boeri and J. Sikora: Materials Science and Technology Vol. 18 (2002), p.691.

Google Scholar

[36] G. Rivera, P.R. Calvillo, R. Boeri, Y. Houbaert and J. Sikora: Materials Characterization Vol. 59 (2008), p.1342.

Google Scholar