[1]
T. Inoue, M. Nakano, T. Kubo and S. Matsumoto: High Accuracy Control Magnet Power Supply of Proton Synchrotron in Recurrent Operation, The Trans. of The Institute of Electrical Engineers of Japan, (1980)(in Japanese), pp.234-240.
Google Scholar
[2]
T. Inoue, S. Iwai, and M. Nakano: High Accuracy Control of Play-Back Servo System, The Trans. of The Institute of Electrical Engineers of Japan, 101-4, (1981), pp.89-96.
Google Scholar
[3]
S. Hara, T. Omata and M. Nakano: Stability Condition and Synthesis Methods for Repetitive Control System, Trans. Soc. Instrument and Control Engineers, 22-1, (1986) pp.36-42.
DOI: 10.9746/sicetr1965.22.36
Google Scholar
[4]
Y. Yamamoto and S. Hara: The Internal Model Principle and Stabilizability of Repetitive Control System, Trans. of the Society of Instrument and Control Engineers, 22-8, (1987), pp.830-834.
DOI: 10.9746/sicetr1965.22.830
Google Scholar
[5]
S. Hara and Y. Yamamoto: Stability of Multivariable Repetitive Control Systems - Stability Condition and Class of Stabilizing Controllers, Trans. of the Society of Instrument and Control Engineers, 22-12, (1986), pp.1256-1261.
DOI: 10.9746/sicetr1965.22.1256
Google Scholar
[6]
S. Hara, Y. Yamamoto, T. Omata and M. Nakano: Repetitive Control System: A New Type Servo System for Periodic Exogenous Signals, IEEE Trans. on Automatic Control, AC-33-7, (1988), pp.659-668.
DOI: 10.1109/9.1274
Google Scholar
[7]
T. Omata, S. Hara and M. Nakano: Nonlinear Repetitive Control with Application to Trajectory Control of Manipulators, J. of Robotic Systems, Vol4-5, (1987), pp.631-652.
DOI: 10.1002/rob.4620040505
Google Scholar
[8]
K. Watanabe and M. Yamatari: Stabilization of Repetitive Control System - Spectral Decomposition Approach, Trans. of the Society of Instrument and Control Engineers, Vol. 22-5, (1986), pp.535-541.
DOI: 10.9746/sicetr1965.22.535
Google Scholar
[9]
M. Ikeda and M. Takano: Repetitive Control for Systems with Nonzero Relative Degree, Proc. of the 29th CDC, (1990), pp.1667-1672.
DOI: 10.1109/cdc.1990.203905
Google Scholar
[10]
H. Katoh and Y. Funahashi: A Design Method of Repetitive Controllers, Trans. of the Society of Instrument and Control Engineers, Vol. 32-12, (1996), pp.1601-1605.
DOI: 10.9746/sicetr1965.32.1601
Google Scholar
[11]
M. Gotou, S. Matsubayashi, F. Miyazaki, S. Kawamura and S. Arimoto: A Robust System with an Iterative Learning Compensator and a Proposal of MultiPeriod Learning Compensator, J. of the Society of Instrument and Control Engineers, Vol. 31-5, (1987).
Google Scholar
[12]
H. Sugimoto and K. Washida: A Production of Modified Repetitive Control with Corrected Dead Time, Trans. of the Society of Instrument and Control Engineers, Vol. 34, (1998), pp.645-647.
DOI: 10.9746/sicetr1965.34.645
Google Scholar
[13]
H. Sugimoto and K. Washida: A Design Method for Modified Repetitive Control with Corrected Dead Time, Trans. of the Society of Instrument and Control Engineers, Vol. 34, (1998), pp.761-768.
DOI: 10.9746/sicetr1965.34.761
Google Scholar
[14]
T. Okuyama, K. Yamada and K. Satoh: A Design Method for Repetitive Control Systems with a Multi-Period Repetitive Compensator, Theoretical and Applied Mechanics Japan}, Vol. 51, (2002), pp.161-167.
Google Scholar
[15]
K. Yamada, K. Satoh, T. Arakawa and T. Okuyama: A Design Method for Repetitive Control Systems with Multi-Period Repetitive Compensator, Trans. Japan Soc. Mechanical Engineers, Vol. 69-686, (2003), pp.2691-2699.
DOI: 10.1299/kikaic.69.2691
Google Scholar
[16]
H. L. Broberg and R. G. Molyet: A New Approach to Phase Cancellation in Repetitive Control, Proc. of the 29th IEEE IAS, (1994), pp.1766-1770.
DOI: 10.1109/ias.1994.377667
Google Scholar
[17]
M. Steinbuch: Repetitive Control for Systems with Uncertain Period-time, Automatica, 38, (2002), pp.2103-2109.
DOI: 10.1016/s0005-1098(02)00134-6
Google Scholar
[18]
D. C. Youla, H. Jabr and J. J. Bongiorno: Modern Wiener-Hopf Design of Optimal Controllers. Part I, IEEE Trans. Automatic Control, Vol. AC-21(1976), pp.3-13.
DOI: 10.1109/tac.1976.1101139
Google Scholar
[19]
V. Kucera: Discrete Linear System, The Polynomial Equation Approach, Wiley, (1979).
Google Scholar
[20]
C. A. Desoer, R. W. Liu, J. Murray and R. Saeks: Feedback System Design: The Fractional Representation Approach to Analysis and Synthesis, IEEE Trans. Automatic Control, Vol. AC-25, (1980), pp.399-412.
DOI: 10.1109/tac.1980.1102374
Google Scholar
[21]
J. J. Glaria and G. C. Goodwin: A Parameterization for the Class of All Stabilizing Controllers for Linear Minimum Phase System, IEEE Trans. Automatic Control, Vol. AC-39, (1994), pp.433-434.
DOI: 10.1109/9.272352
Google Scholar
[22]
M. Vidyasagar: Control System Synthesis-A factorization approach-, MIT Press, (1985).
Google Scholar
[23]
K. Yamada, K. Satoh and T. Arakawa: The Parameterization of all Stabilizing Multiperiod Repetitive Controllers, Int. Conf. Cybernetics and Information Technologies, System and Applications, Vol. II (2004), pp.358-363.
Google Scholar
[24]
K. Yamada, K. Satoh and T. Arakawa: A Design Method for Multiperiod Repetitive Controllers (Design Method Using the Parameterization of all Multiperiod Repetitive Controllers), Trans. Japan Soc. Mechanical Engineers, Vol. 71-710C, (2005).
DOI: 10.1299/kikaic.71.2945
Google Scholar