Mutual Information Model of Adaptive Waveform Design

Article Preview

Abstract:

Traditional radar systems are lack of adaptivity to the environment. Modern radar systems should transmit different waveforms according to different environment. In this paper, mutual information model of adaptive waveform design is proposed. With this model, different waveforms can be designed adaptively under different radar working conditions. Simulation results demonstrate the validity of our model. Finally, the whole paper is summarized.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 460-461)

Pages:

207-212

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Haykin: Cognitive radar: a way of the future, IEEE Signal Processing Magazine, vol. 23, no. 1(2006), pp.30-40.

DOI: 10.1109/msp.2006.1593335

Google Scholar

[2] S. Haykin: Cognition is the key to the next generation of radar systems, in Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop (DSP/SPE 2009), IEEE Press(2009), pp.463-467.

DOI: 10.1109/dsp.2009.4785968

Google Scholar

[3] S. Haykin, Y. B. Xue and T. Davidson: Optimal waveform design for cognitive radar, in Asilomar Conference, IEEE Press(2008).

DOI: 10.1109/acssc.2008.5074349

Google Scholar

[4] I. Arasaratnam and S. Haykin: Cubature Kalman filters, IEEE Transactions on Automatic Control, vol. 54, no. 6(2009), pp.463-467.

DOI: 10.1109/tac.2009.2019800

Google Scholar

[5] N. A. Goodman, Phaneendra R. Venkata and Mark A. Neifeld: Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors, IEEE Journal of Selected Topics in Signal Processing, vol. 1, no. 1(2007).

DOI: 10.1109/jstsp.2007.897053

Google Scholar

[6] R. A. Romero, N. A. Goodman: Waveform design in single-dependent interference and application to target recognition with multiple transmissions, IET Radar, Sonar and Navigation, vol. 3, no. 4(2009), pp.328-340.

DOI: 10.1049/iet-rsn.2008.0146

Google Scholar

[7] S. P. Sira, D. Cochran: Adaptive waveform design for improved detection of low-RCS targets in heavy sea clutter, IEEE Journal of Selected Topics in Signal Processing, vol. 1, no. 1(2007), pp.56-66.

DOI: 10.1109/jstsp.2007.897048

Google Scholar

[8] S. P. Sira, A. Papandreou-Suppappola, D. Morrell: Dynamic configuration of time-varying waveforms for agile sensing and tracking in clutter, IEEE Trans. Signal Processing, vol. 55, no. 7(2007), pp.3207-3217.

DOI: 10.1109/tsp.2007.894418

Google Scholar

[9] A. Leshem, O. Naparstek, A. Nehorai. Information theoretic adaptive radar waveform design for multiple extended targets, IEEE Journal of Selecte Topics in Signal Processing, vol. 1, no. 1(2007), pp.42-55.

DOI: 10.1109/wddc.2007.4339444

Google Scholar

[10] C. Rago, P. Willett and Y. Bar-Shalom: Detecting-tracking performance with combined waveforms, IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 2(1998), pp.612-624.

DOI: 10.1109/7.670395

Google Scholar

[11] D. J. Kershaw and R. J. Evans: Waveform selective probabilistic data association, IEEE Transactions on Aerospace and Electronic Systems, vol. 33, no. 4(1997), pp.1180-1188.

DOI: 10.1109/7.625110

Google Scholar

[12] M. R. Bell: Information theory and radar waveform, IEEE Transactions on Information Theory, vol. 39, no. 5(1993), pp.1578-1597.

DOI: 10.1109/18.259642

Google Scholar