Surface Hardening of Aluminium-Copper Alloy 2011 by RF Plasma Nitriding Process

Article Preview

Abstract:

In this work, an inductively-coupled rf plasma reactor was utilized in the nitriding process for surface hardness improvement of aluminium-copper alloy 2011. Substrate bias at 400V was used in the pre-sputtering step to eliminate the aluminium oxide on the samples. Plasma nitriding was carried out in a N2-H2 admixture at total pressure of 1 torr. The process length was varied from 9 to 36 hours while the input rf power and substrate temperature were varied from 100 to 300 W and kept at 400 oC, respectively. A negative bias voltage up to 400 V was used in the nitriding process. Glancing incident-angle x-ray diffraction (GIXRD) results showed the hexagonal crystal structure of AlN on samples. The roughness increased slightly when the voltage increase up to 400V and was investigated by Scanning Electron Micrograph (SEM). Electron Probe Microscopy Analysis (EPMA) and Energy Dispersive X-ray Analysis (EDX) were used to detect the N atoms in specimens. Significant increases of surface hardness are observed after plasma nitriding.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 462-463)

Pages:

1097-1102

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Vissutipitukul, T. Aizawa and H. Kuwahara: Mater Trans. Vol. 44 (2003), pp.1412-1418.

Google Scholar

[2] S. Gredelj, A. Gerson, S. Kumar and G. Cavallaro: Appl. Surf. Sci. Vol. 174 (2001), pp.240-250.

Google Scholar

[3] M. Moradshahi, T. Tavakoli, S. Amiri and S. Shayeganmehr: Surf. Coat. Technol. Vol. 201 (2006), pp.567-574.

Google Scholar

[4] P. Vissutipitukul and T. Aizawa: Wear Vol. 259 (2005), pp.482-489.

Google Scholar

[5] S. Gredelj, A. Gerson, S. Kumar and N. McIntyre: Appl. Surf. Sci. Vol. 199 (2002), pp.234-247.

Google Scholar

[6] Y. Lee and S. Won Kang: Thin Solid Films Vol. 446 (2004), pp.227-231.

Google Scholar

[7] H. Michel, T. Czerwiec, M. Gantois, D. Abitzer and A. Ricard: Surf. Coat. Technol. Vol. 72 (1995), pp.103-111.

Google Scholar

[8] M. Quast, P. Mayr, H. Stock, H. Podlesak, and B. Wielage, Surf. Coat. Technol. Vol. 135 (2001), pp.238-249.

Google Scholar

[9] N. Z. Negm: Material Science and Engineering Vol. 129 (2006), pp.207-210.

Google Scholar

[10] N. Renevier, T. Czerwiec, A. Billard, J. von Stebut and H. Michel: Surf. Coat. Technol. Vol. 116-119 (1999), pp.380-385.

DOI: 10.1016/s0257-8972(99)00209-1

Google Scholar

[11] M. Baldwin, M. Fewell, S. Haydon, S. Kumar and G. Collins: Surf. Coatings Technol. Vol. 98 (1998), pp.1187-1191.

Google Scholar

[12] H. Chen, H. Stock and P. Mayr: Surf. Coat. Technol. Vol. 64 (1994), pp.139-147.

Google Scholar

[13] S. Gredelj, S. Kumar, A. Gerson and G. Cavallaro: Thin Solid Films Vol. 515 (2006), pp.1480-1485.

DOI: 10.1016/j.tsf.2006.04.031

Google Scholar

[14] F. El-Hossary, N. Negm, S. Khalil and M. Raaif: Thin Solid Films Vol. 497 (2006), pp.196-202.

DOI: 10.1016/j.tsf.2005.09.193

Google Scholar

[15] K. Taweesub, P. Visuttipitukul, S. Tungkasmita and B. Paosawatyanyong: Surf. Coatings Technol. Vol. 204 (2010), p.3091–3095.

DOI: 10.1016/j.surfcoat.2010.02.015

Google Scholar

[16] A. Ceylan, E. Kaynak, S. Ozcan and T. Firat: Turk J Phys Vol. 28 (2004), pp.265-269.

Google Scholar

[17] P. Vissutipitukul and T. Aizawa: Surf. Eng. Vol. 22 No. 3 (2006) pp.187-195.

Google Scholar

[18] T. Czerwiec, F. Greer and D. B Graves: J. Phys. D: Appl. Phys. Vol. 38 (2005), pp.4278-4289.

Google Scholar

[19] A. B. M. S Azam, Abd. H. Hamidon and S. Xu: Vacuum Vol. 73 (2004), pp.487-492.

Google Scholar

[20] J. M. Priest, M. J. Baldwin and M. P. Fewell: Surf. Coat. Technol. Vol. 145 (2001), pp.152-163.

Google Scholar