Fracture Analyses for Interface Corners in Elastic Materials Subjected to Thermal Loading

Abstract:

Article Preview

By employing the Stroh formalism for two-dimensional anisotropic thermoelasticity, fracture analyses of interface corners between two dissimilar anisotropic elastic materials under thermal loadings are considered in this paper. It was proved that the consideration of thermal effects will not influence the stress singularity but will induce heat flux singularity if the singularity of the temperature field is not permissible. To calculate the stress intensity factors via path independent H-integral, it was found that the one proposed previously for the mechanical loading conditions should be modified by adding an additional surface integral accounting for the thermal effects. Two examples considering cracks and corners in isotropic plates are presented to show the correctness and validity of the modified H-integral.

Info:

Periodical:

Key Engineering Materials (Volumes 462-463)

Edited by:

Ahmad Kamal Ariffin, Shahrum Abdullah, Aidy Ali, Andanastuti Muchtar, Mariyam Jameelah Ghazali and Zainuddin Sajuri

Pages:

277-283

DOI:

10.4028/www.scientific.net/KEM.462-463.277

Citation:

C. B. Hwu et al., "Fracture Analyses for Interface Corners in Elastic Materials Subjected to Thermal Loading", Key Engineering Materials, Vols. 462-463, pp. 277-283, 2011

Online since:

January 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.