Finite Element Analysis of Rate- and State-Dependent Frictional Contact Behavior

Abstract:

Article Preview

In the present study, the rate- and state-dependent friction model [Hashiguchi and Ozaki, 2008] is implemented in the dynamic finite element method. The typical rate- and state-dependent frictional contact problems, which are consisted by elastic and rigid bodies having simple shapes, are then analyzed by the present method. The validity of the present method for the microscopic sliding and stick-slip instability is examined under various dynamic characteristics of the system, such as contact load, elastic stiffness, driving velocity and frictional properties. It is shown that the present method can solve simultaneously not only rate- and state-dependent frictional behavior on the contact boundary but also coupling effects with internal deformations, whereas it cannot predicted by the conventional finite element analysis with the Coulomb’s friction law.

Info:

Periodical:

Key Engineering Materials (Volumes 462-463)

Edited by:

Ahmad Kamal Ariffin, Shahrum Abdullah, Aidy Ali, Andanastuti Muchtar, Mariyam Jameelah Ghazali and Zainuddin Sajuri

Pages:

547-552

DOI:

10.4028/www.scientific.net/KEM.462-463.547

Citation:

S. Ozaki "Finite Element Analysis of Rate- and State-Dependent Frictional Contact Behavior", Key Engineering Materials, Vols. 462-463, pp. 547-552, 2011

Online since:

January 2011

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.