Thermal Stress and Thermal Cycling Analyses of Microgyroscope Chip Models

Article Preview

Abstract:

The thermal stress and thermal fatigue life for three different microgyroscope chip models were investigated in this paper. The deformation and stress distribution in chip, at interface between microgyroscope and chip, and in the spring of microgyroscope were obtained for three different microgyroscope chip models by the finite element method. The results show that for the simplified model, no obvious differences from linear or nonlinear analyses are obtained and the fatigue life of microgyroscope chip can be predicted with the properly simplified model. Also, the model having the same process in fabricating microgyroscope and carrier has better reliability. This paper provides an effective method for the reliability analysis of microgyroscope chip.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 462-463)

Pages:

622-627

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. P. Hsu, D. H. Tsai1, M. C. Yip and W. L. Fang: IEEE Sensors Conference (2007), p.800.

Google Scholar

[2] J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright and J. M. Cotte: IEEE J. Solid-State Circuits, Vol. 41, No. 8 (2006), p.1718.

DOI: 10.1109/jssc.2006.877252

Google Scholar

[3] P. A. Miranda and A. J. Moll: IEEE Electronic Components and Technology Conference, (2006), p.844.

Google Scholar

[4] N. Ranganathan, K. Prasad, N. Balasubramanian and K. L. Pey: J. Micromech. Microeng., Vol. 18 (2008), p.1.

Google Scholar

[5] S. H. Choa: Microelectron. Reliab., Vol. 45 (2005), p.361.

Google Scholar

[6] G. Liu, A. Wang, T. Jiang, J. Jiao and J. B. Jang: Microsystems Technology, Vol. 14 (2008), p.199.

Google Scholar

[7] N. Tanaka, T. Sato, Y. Yamaji, T. Morifuji, M. Umemoto and K. Takahashi: IEEE Electronic Components and Technology Conference, (2002), p.473.

Google Scholar

[8] S. W. Yoon, S. Y. L. Lim, A. G. K. Viswanath, S. Thew, T. C. Chai and V. Kripesh: IEEE Trans. Adv. Packag., Vol. 31, No. 1 (2008), p.127.

DOI: 10.1109/tadvp.2007.914971

Google Scholar

[9] C. S. Selvanayagam, J. H. Lau, X. Zhang, S. K. W. Seah, K. Vaidyanathan and T. C. Chai: IEEE Electronic Components and Technology Conference, (2008), p.1073.

Google Scholar

[10] Release 11. 0 Documentation for ANSYS: Theory Reference, (2006).

Google Scholar

[11] M. K. Yeh and T. M. Hong: Proceedings of the 4th Asia Pacific Conference on Transducers and Micro/Nano Technologies, APCOT 4, Tainan, Taiwan, ROC, (2008), Paper No. 295.

Google Scholar

[12] R. Iannuzzelli: IEEE Electronic Components and Technology Conference, Atlanta, GA, USA (1991), p.410.

Google Scholar

[13] D. E. Riemer: Proc. 40th Electron. Compon. Technol. Conf., (1990), p.418.

Google Scholar

[14] JESD22-A104C, Temperature Cycling, JEDEC Standard, May (2005).

Google Scholar

[15] J. H. Lau: IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol. 19, No. 4 (1996), p.728.

Google Scholar