Phase Field Simulation of Ferroelectrics with Cracks

Abstract:

Article Preview

By employing a dipole defect model, two-dimensional phase field simulations of domain switching in the crack tip vicinity of a crack embedded in a relaxor ferroelectric single crystal, which was subjected to mechanical loading and electric field, have been carried out. The interaction between the dipole defects and crack, the influence of the dipole defect concentration density on the switching process, and the coupling effect of mechanical stress and electric field on domain switching in the vicinity of the crack tip have been studied. Comparing the results obtained from relaxor ferroelectrics with those of normal ferroelectrics, the former showed that, due to the interaction between the dipole defects and crack, polarization switching in the vicinity of the crack tip was suppressed. Moreover, the coupling between applied mechanical stress and electric field can either promote or suppress domain switching in the vicinity of a crack.

Info:

Periodical:

Key Engineering Materials (Volumes 462-463)

Edited by:

Ahmad Kamal Ariffin, Shahrum Abdullah, Aidy Ali, Andanastuti Muchtar, Mariyam Jameelah Ghazali and Zainuddin Sajuri

Pages:

710-715

DOI:

10.4028/www.scientific.net/KEM.462-463.710

Citation:

X. F. Zhao and A.K. Soh, "Phase Field Simulation of Ferroelectrics with Cracks", Key Engineering Materials, Vols. 462-463, pp. 710-715, 2011

Online since:

January 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.