Effect of Sandblasting and Surface Mechanical Attrition Treatment on Surface Roughness, Wettability, and Microhardness Distribution of AISI 316L

Article Preview

Abstract:

Surface roughness and wettability determines the stability of bone-implant integration. Stable implants can be found in those with a rough and hydrophilic surface. Sandblasting and surface mechanical attrition treatment (SMAT) are among the current techniques to obtain surface with such typical properties. In addition, both treatments increase mechanical strength of metal through surface grains refinement. In this paper, the effect of sandblasting and SMAT on surface roughness, wettability, and microhardness distribution of AISI 316L is discussed. All treatments were conducted for 0-20 minutes. The result shows a rougher and a more hydrophilic surface on the sandblasted samples rather than on those with SMAT. A harder surface is yielded by both treatments, but the SMAT produces a thicker hardened layer.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 462-463)

Pages:

738-743

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Brånemark, P.I. Brånemark, B. Rydevik and R.R. Myers: J. Rehabil. Res. Dev. Vol. 38 (2001), p.175.

Google Scholar

[2] T. Albrektsson and C. Johansson: Eur. Spine J. Vol. 10 (2001), p. S96.

Google Scholar

[3] T. Albrektsson and B. Albrektsson: Acta Orthop. Vol. 58 (1987), p.567.

Google Scholar

[4] C.N. Elias, Y. Oshida, J.H.C. Lima and C.A. Muller: J. Mech. Behav. Biomed. Mater. Vol. 1 (2008), p.234.

Google Scholar

[5] M. Rong, L. Zhou, Z. Gou, A. Zhu and D. Zhou: J. Mater. Sci. Mater. Med. Vol. 20 (2009), p.1721.

Google Scholar

[6] F. Rupp, L. Scheideler, D. Rehbein, D. Axmann and J. Geis-Gerstorfer: Biomaterials Vol. 25 (2004), p.1429.

DOI: 10.1016/j.biomaterials.2003.08.015

Google Scholar

[7] C. Aparicio, F.J. Gil, C. Fonseca, M. Barbosa and J.A. Planell: Biomaterials. Vol. 24 (2003), p.263.

Google Scholar

[8] A. Piattelli, A. Scarano, M. Piattelli and L. Calabrese: Biomaterials. Vol. 17 (1996), p.1015.

DOI: 10.1016/0142-9612(96)84677-1

Google Scholar

[9] B. Arifvianto, Suyitno and A.W. Paraga: Proc. Int. Conf. Mater. Metal. Tech. (2009), p.14.

Google Scholar

[10] B. Arifvianto and Suyitno: Proc. Int. Conf. Instr. Com. Inf. Tech. Biomed. Eng. (2009), p.225.

Google Scholar

[11] T. Roland, D. Retraint, K. Lu and J. Lu: Mater. Sci. Eng. A. Vol. 445-446 (2007), p.281.

Google Scholar

[12] X.H. Chen, J. Lu, L. Lu and K. Lu: Scr. Mater. Vol. 52 (2005), p.1039.

Google Scholar

[13] Y. Todaka, M. Umemoto and K. Tsuchiya: Mater. Trans. Vol. 45 (2004), p.376.

Google Scholar

[14] J. Walczak, F. Shahgaldi and F. Heatley: Biomaterials. Vol. 19 (1998), p.229.

Google Scholar

[15] D. Bombac, M. Brojan, M. Krkovic, R. Turk and A. Zalar: Mater. Geoenv., Vol. 54 (2007), p.151.

Google Scholar

[16] K. Lu and J. Lu: Mater. Sci. Eng. A. Vol. 375-377 (2007), p.38.

Google Scholar

[17] C.J. Wilson, R.E. Clegg, D.I. Leavensley and M.J. Pearcy: Tissue Eng. Vol. 11 (2005), p.1.

Google Scholar

[18] O.E. Carew, F.W. Cooke, J.E. Lemons, B.D. Ratner, I. Vesely and E. Vogler, in: Biomaterials Science: An Introduction to Materials in Medicine, 2nd Edition, edited by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Elsevier Academic Press, Amsterdam (2004).

DOI: 10.1016/b978-012582460-6/50004-9

Google Scholar

[19] Z. Pakiela, H. Garbacz, M. Lewandowska, A. Druzycka-Wiencek, M. Sus-Ryszkowska, W. Zielinski and K.J. Kurzydlowski: Nukleonika. Vol. 51 (2006), p. S19.

Google Scholar

[20] M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson and E. Ma: Acta Mater. Vol. 55 (2007), p.4041.

Google Scholar

[21] Th. Uelzen and J. Muller: Thin Solid Films. Vol. 434 (2003), p.311.

Google Scholar

[22] J. Bico, C. Marzolin and D. Quere, Eurphys. Lett., Vol. 47 (1999), p.220.

Google Scholar

[23] D.A. Puleo and A. Nanci: Biomaterials. Vol. 20 (1999), p.2311.

Google Scholar

[24] G. Mendonca, D.B.S. Mendonca, F.J.L. Aragao and L.F. Cooper: Biomaterials. Vol. 29 (2008), p.3822.

Google Scholar

[25] B.O. Palsson and S.N. Bhatia, Tissue Engineering, Pearson Education Inc., New Jersey, (2004), p.20.

Google Scholar

[26] D.D. Deligianni, N. Katsala, S. Ladas, D. Satiropoulou, J. Amedee and Y.F. Missirlis: Biomaterials. Vol. 22 (2001), p.1241.

Google Scholar

[27] E.A. Vogler: J. Biomater. Sci., Vol. 10 (1999), p.1015.

Google Scholar

[28] M. Multigner, E. Frutos, J.L. Gonzalez-Carraso, J.A. Jimenez, P. Marin and J. Ibanez: Mater. Sci. Eng. C. Vol. 29 (2009), p.1357.

Google Scholar

[29] N. Tao, H.W. Zhang, J. Lu and K. Lu: Mater. Trans. Vol. 44 (2003), p. (1919).

Google Scholar

[30] H.W. Zhang, Z.K. Hei, G. Liu, J. Lu and K. Lu: Acta Mater. Vol. 51 (2003), p.1871.

Google Scholar

[31] E.R. de los Rios, A. Walley, M.T. Milan and G. Hammersley: Int. J. Fatigue. Vol. 17 (1995), p.493.

Google Scholar

[32] B. Arifvianto, Suyitno and M. Mahardika: Proc. 2nd AUN/SEED-Net Reg. Conf. Manuf. Eng. (2009), p. A8.

Google Scholar

[33] T. Roland, D. Retraint, K. Lu and J. Lu: Scr. Mat. Vol. 54 (2006), p. (1949).

Google Scholar