Abrasion and Erosion-Corrosion Behavior of Al-Mn Alloy Matrix Composites Reinforced with Al2O3 Particulates

Article Preview

Abstract:

Al-2%Mn alloy matrix composites reinforced with Al2O3 particulates was fabricated by stirring cast, and the composites was characterized and analyzed by using a variety of analytical techniques, such as XRD, SEM, EDS, Brinell hardness tester, ring-on-block tribometer, and erosion-corrosion tester. The results show that the composites in as cast condition is mainly composed of Al,  -Al2O3, MnAl6 and Al11Mn4 phase, and the Al2O3 particles are dispersed uniformly in the Al matrix. Compared with the base aluminium and the Al-2%Mn alloy, the HB hardness of the composites is increased significantly, and the wear loss is far less under the SO4•Cl- Na•Ca• Mg corrosive alkalescent aqueous solution lubricated condition. The erosive-corrosive wear rates of the composites are lower than those of the Al-2%Mn alloy irrespective of the rotational speed or the size of grinding particles. The Al2O3 particulates reinforced Al-2%Mn alloy matrix composites possesses a good wear-resistance and erosion-corrosion resistance due to its higher hardness.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 462-463)

Pages:

996-1001

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.C. Sharma: Wear Vol. 249 (2001), p.1036.

Google Scholar

[2] C.S. Lee : J Mat Sci Vol. 27 (1992), p.793.

Google Scholar

[3] D. L. Mcdanels: Metall Trans Vol. 16A(1985), p.1105.

Google Scholar

[4] S. Das, S. Das and K. Das: Comp Sci Technol Vol. 67 (2007), p.746.

Google Scholar

[5] L. Pinto, E. Zshech: Mater Sci Forum Vol. 217-222 (1996), p.1593.

Google Scholar

[6] Y. L. Sarawwathi, S. Das, D. P. Mondal: Mater Sci Eng A Vol. 425(2006), p.244.

Google Scholar

[7] H. Y. Yao, R. Z. Zhu: Corrosion Vol. 54 (1996), p.499.

Google Scholar

[8] A. T. Alpas, J. Zhang: Scripta Metall Mater Vol. 26 (1992), p.505.

Google Scholar

[9] J. K. M. Kwok, S. C. Lim: Comp Sci Technol Vol. 59 (1999), p.55.

Google Scholar

[10] Y. Sahin, M. Kok, H. Celik: J Mater Process Technol Vol. 128 (2002), p.280.

Google Scholar

[11] A. T. Alpas, J. Zhang: Metallurg Trans A Vol. 25A (1994), p.969.

Google Scholar

[12] C.L. He, Q. K. Cai: Mater Protect Vol. 17 (2003), p.45.

Google Scholar

[13] P.K. Rohatgi, R. Asthana, S. Das: Int Metals Rev Vol. 31 (1986), p.115.

Google Scholar

[14] Z. L. Fan, X. P. Wang: Journal of Natural Resource Vol. 5 (1990), p.311.

Google Scholar

[15] H. H. Wang, B. F. Xu and X. J. Wu: Chin J Nonferrous Metals Vol. 13(2003), p.662.

Google Scholar

[16] A. Banerji, S. V. Prasad and M. K. Surappa: Wear Vol. 82 (1982), p.141.

Google Scholar

[17] A. Wang, H. J. Pack: Wear Vol. 146 (1991), p.337.

Google Scholar

[18] W. Liu, Y. G. Zheng and Z. M. Yao: Chin J Mater Res Vol. 15 (2001), p.505.

Google Scholar