Effects of Chlorine on Aluminum Refining: A Review and an Ab Initio Molecular Dynamics Study

Article Preview

Abstract:

A comprehensive introduction of current aluminum refining technology is reviewed in this work especially the effects of chlorine on refining process is discussed. The mechanism of chlorine on improving hydrogen diffusion has been studied by ab initio molecular dynamics calculations and we obtain the diffusivity of hydrogen in liquid aluminum which is in agreement with the experimental data. It can be concluded that the diffusion of hydrogen in aluminum melts can be enhanced on the presence of chlorine.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 467-469)

Pages:

1404-1409

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Waite, in: A Technical Perspective on Molten Aluminum Processing , Light Metals (2002), p.842.

Google Scholar

[2] T. A. Utigard, in: Proceedings of the International Symposium on Extraction, Refining, and Fabrication of Light Metals (Ottawa, Canada: CIM, 1991), p.353.

Google Scholar

[3] T. A. Engh, in: Principles of Metal Refining (Oxford University Press, New York, 1992), p.114.

Google Scholar

[4] Gesing and R. Wolanski, in: Recycling Light Metals from End-of-Life Vehicles, JOM, (2001), p.21.

DOI: 10.1007/s11837-001-0188-3

Google Scholar

[5] S. Hayashi, Jpn. J. Appl. Phys. Vol. 37 (1998), p.930.

Google Scholar

[6] Sigworth, G. K. in: Practical Degassing of Aluminum. Modern Casting (1988), p.42.

Google Scholar

[7] V.S. Warke, S. Shankar, M.M. Makhlouf, J. Mater. Proc. Tech. Vol. 168 (2005), p.119.

Google Scholar

[8] R. Thomson, J. Mater. Sci. Vol. 13 (1978), p.128.

Google Scholar

[9] H. K. Birnbaum, J. Alloys. Compd. Vol. 253-254 (1997), p.260.

Google Scholar

[10] Y. J. Chen, Mater. Trans. Vol. 51 (2010), p.803.

Google Scholar

[11] O. Krogh, T. Wicker and B. Chapman, J. Vac. Sci. Technol. B. Vol. 4 (1986), p.1292.

Google Scholar

[12] G. R. Scheller, R. A. Gottscho, T. Intrator and D. B. Graves, J. Appl. Phys. Vol. 64(1988), p.598.

Google Scholar

[13] E. Hashimoto and T. Kino, J. Phys. F: Met. Phys. Vol. 13(1983), p.1157.

Google Scholar

[14] Q. Fu, D. Xu and J. W. Evans, Metall. Mater. Trans. B. Vol. 13(1998), p.447.

Google Scholar

[15] P. L. Brun, in Light Metals edited by W. Schneider (TMS: The Minerals, Metals & Materials Society, 2002), p.863.

Google Scholar

[16] M. D. Segal, J. Phys.: Condens. Matter Vol. 14 (2002), p.2717.

Google Scholar

[17] J. P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Vol. 77 (1996), p.3865.

Google Scholar

[18] H. J. Monkhorst and J. D. Pack, Phys. Rev. B. Vol. 13 (1976), p.5188.

Google Scholar

[19] A. B . Belonoshko, A. Rosengren and Q. Dong, Phys. Rev. B. Vol. 69 (2004), 024302.

Google Scholar