Bayesian Image Denoising Using an Anisotropic Markov Random Field Model

Article Preview

Abstract:

This paper presents a Bayesian denoising method based on an anisotropic Markov Random Field (MRF) model in wavelet domain in order to improve the image denoising performance and reduce the computational complexity. The classical single-resolution image restoration method using MRFs and the maximum a posteriori (MAP) estimation is extended to the wavelet domain. To obtain the accurate MAP estimation, a novel anisotropic MRF model is proposed under this framework. As compared to the simple isotropic MRF model, this new model can capture the intrascale dependencies of wavelet coefficients significantly better. Simulation results demonstrate our proposed method has a good denoising performance while reducing the computational complexity.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 467-469)

Pages:

2018-2023

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. L. Donohu and I. M. Johnstone: Adapting to unknown smoothness via wavelet shrinkage, J. Amer. Statist. Assoc., vol. 90, pp.1200-1224, (1995).

DOI: 10.1080/01621459.1995.10476626

Google Scholar

[2] H. Rabbani, R. Nezafat, and S. Gazor: Wavelet-Domain Medical Image Denoising Using Bivariate Laplacian Mixture Model, IEEE Trans. Biomedical Engineering, vol. 56, pp.2826-2837 , (2009).

DOI: 10.1109/tbme.2009.2028876

Google Scholar

[3] Y. Chen, Z.C. Ji, C.J. Hua: Efficient statistical modeling of wavelet coefficients for Image Denoising, International Journal of Wavelets, Multiresolution and Information Processing, vol. 7, pp.629-641, (2009).

DOI: 10.1142/s0219691309003136

Google Scholar

[4] M. Malfait and D. Roose: Wavelet-bsed image denoising using a Markov Random Field a priori model, IEEE Trans. Image Processing, vol. 6, pp.549-565, (1997).

DOI: 10.1109/83.563320

Google Scholar

[5] M. Jansen and A. Bultheel : Empirical Bayes approach to improve wavelet thresholding for image noise reduction, J. Amer. Statist. Assoc., vol. 96, no. 454, pp.629-639, (2001).

DOI: 10.1198/016214501753168307

Google Scholar

[6] A. Pižurica, W. Philips, I. Lemahieu, and M. Acheroy: A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising, IEEE Trans. Image Processing, vol. 11, pp.545-557, (2002).

DOI: 10.1109/tip.2002.1006401

Google Scholar

[7] S. Geman, D. Geman: Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, pp.721-741, (1984).

DOI: 10.1109/tpami.1984.4767596

Google Scholar

[8] M. Jansen, M. Malfait, and A. Bultheel: Generalized cross validation for wavelet thresholding, Signal Processing, vol. 56, pp.33-44, (1997).

DOI: 10.1016/s0165-1684(97)83621-3

Google Scholar

[9] J. Besag: On the statistical analysis of dirty pictures, Journal of the Royal Statistical Society, Series B, vol. 48, pp.259-302, (1986).

DOI: 10.1111/j.2517-6161.1986.tb01412.x

Google Scholar